Chapter Objective:

This chapter provides a way to measure economic exposure, discusses its determinants, and presents methods for managing and hedging economic exposure.

Chapter Outline

- Three Types of Exposure
 - Economic vs. Transaction vs. Translation
 - Economic Exposure:
 - Measurement
 - Management
 - Operating Exposure:
 - Definition & Illustration
 - Determinants
 - Management

Three Types of Exposure

- Economic
 - vs. Transaction
 - vs. Translation

1. Economic Exposure

- Exchange rate risk as applied to the firm’s competitive position.
- Any anticipated changes in the exchange rates would have been already discounted and reflected in the firm’s value.
- Economic exposure can be defined as the extent to which the value of the firm would be affected by unanticipated changes in exchange rates.
Economic Exposure (continued)

- Changes in exchange rates can affect
 - firms directly engaged in international trade
 - purely domestic firms*
- * Examples
 - US bike manufacturer who sources/sells only in the USA
 - Since the firm’s product competes against imported bicycles
 -> it is subject to foreign exchange exposure.
 - High-end ski slope operator in the Alps
 - Even if the clientele is overwhelmingly from the EU, most of
 those customers will cross-shop with the Rockies or Andes.

2. Transaction Exposure

- This is the subject of Chapter 8.
- Definition
 - sensitivity of the “realized” domestic currency values
 of a firm’s contractual cash flows denominated in
 foreign currencies
 - to unexpected exchange rate changes.
- Transaction exposure arises from fixed-price contracting in a world of constantly changing exchange rates.

Translation Exposure (Not Exam Material)

- The subject of Chapter 10.
- Definition
 - Exchange rate risk as applied to the firm’s consolidated
 financial statements.
 - Consolidation involves translation of subsidiaries’ financial
 statements from local currencies to home currency.
 - Involves many controversial issues.

How to Measure Economic Exposure

- Economic exposure is the sensitivity
 - of (i) the future home currency value of the firm’s
 assets and liabilities and (ii) its operating cash flow
 - to random changes in exchange rates
- Investor’s perspective: Sensitivity of the future home-currency values of the firm’s assets and liabilities to random changes in exchange rates
 - Statistical measurement: regressions of stock price on FX rate
 - Manager’s perspective: Sensitivity of firm’s operating cash flows to random changes in exchange rates
 - Hard to measure: sales are endogenous -> regressions ill advised

Channels of Economic Exposure

- Asset exposure
- Home currency value of assets and liabilities
- Firm Value
- Exchange rate fluctuations
- Operating exposure
- Future operating cash flows
3a. Asset Exposure
(3a is NOT Exam Material)

How to Measure Economic (Asset) Exposure

The exposure coefficient, \(b \), is defined as follows:

\[
b = \frac{\text{Cov}(P,S)}{\text{Var}(S)}
\]

Where \(\text{Cov}(P,S) \) is the covariance between the dollar value of the asset and the exchange rate, and \(\text{Var}(S) \) is the variance of the exchange rate.

How to Measure Economic (Asset) Exposure

The exposure coefficient shows that there are two sources of economic exposure:

1. the variance of the exchange rate and
2. the covariance between the dollar value of the asset and exchange rate

\[
b = \frac{\text{Cov}(P,S)}{\text{Var}(S)}
\]

How to Measure Economic (Asset) Exposure

- Technical issues with the regression analysis
 - *(NOT Exam Material)*
 - Endogeneity problem?
 - Non-stationarity of the stock price & FX time series?
 - Levels vs. differences
 - Time-varying variance?
 - (G)ARCH modeling?

Asset Exposure: A Simple Example

- Suppose a U.S. firm has an asset in Britain whose local currency price is random
- For simplicity, suppose there are only three states of the world & each state is equally likely to occur
- Finally, suppose that (1) the future local currency price of this British asset, say \(P^* \), and (2) the future exchange rate, say \(S \), will be determined depending on the realized state of the world
Example (continued)

<table>
<thead>
<tr>
<th>State</th>
<th>Probability</th>
<th>P^*</th>
<th>S</th>
<th>$S \times P^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>1/3</td>
<td>£980</td>
<td>$1.40/£</td>
<td>£1,372</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.50/£</td>
<td>£1,500</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£1,070</td>
<td>$1.60/£</td>
<td>£1,712</td>
</tr>
<tr>
<td>Case 2</td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.40/£</td>
<td>£1,400</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£933</td>
<td>$1.50/£</td>
<td>£1,400</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£875</td>
<td>$1.60/£</td>
<td>£1,400</td>
</tr>
<tr>
<td>Case 3</td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.40/£</td>
<td>£1,400</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.50/£</td>
<td>£1,500</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.60/£</td>
<td>£1,600</td>
</tr>
</tbody>
</table>

In case one, the local currency price of the asset and the exchange rate are positively correlated.
- This gives rise to substantial exchange rate risk.
- Example? *Cartier?*

<table>
<thead>
<tr>
<th>State</th>
<th>Probability</th>
<th>P^*</th>
<th>S</th>
<th>$S \times P^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>1/3</td>
<td>£980</td>
<td>$1.40/£</td>
<td>£1,372</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.50/£</td>
<td>£1,500</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£1,070</td>
<td>$1.60/£</td>
<td>£1,712</td>
</tr>
<tr>
<td>Case 2</td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.40/£</td>
<td>£1,400</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£933</td>
<td>$1.50/£</td>
<td>£1,400</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£875</td>
<td>$1.60/£</td>
<td>£1,400</td>
</tr>
<tr>
<td>Case 3</td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.40/£</td>
<td>£1,400</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.50/£</td>
<td>£1,500</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.60/£</td>
<td>£1,600</td>
</tr>
</tbody>
</table>

Example (continued)

In case two, the local currency price of the asset and the exchange rate are negatively correlated.
- This ameliorates (i.e., reduces) the exchange rate risk substantially – completely, in this example.
- Example?

<table>
<thead>
<tr>
<th>State</th>
<th>Probability</th>
<th>P^*</th>
<th>S</th>
<th>$S \times P^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 2</td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.40/£</td>
<td>£1,400</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£933</td>
<td>$1.50/£</td>
<td>£1,400</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£875</td>
<td>$1.60/£</td>
<td>£1,400</td>
</tr>
<tr>
<td>Case 3</td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.40/£</td>
<td>£1,400</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.50/£</td>
<td>£1,500</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.60/£</td>
<td>£1,600</td>
</tr>
</tbody>
</table>

Example (continued)

In case three, the local currency price of the asset is fixed at £1,000
- This “contractual” exposure can be completely hedged.
- Realistic? *Electric utility? Health Care?*

<table>
<thead>
<tr>
<th>State</th>
<th>Probability</th>
<th>P^*</th>
<th>S</th>
<th>$S \times P^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 3</td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.40/£</td>
<td>£1,400</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.50/£</td>
<td>£1,500</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>£1,000</td>
<td>$1.60/£</td>
<td>£1,600</td>
</tr>
</tbody>
</table>

3b. Operating Exposure
(Back to Exam Material)

Operating Exposure: Definition

- The effect of random changes in exchange rates on the firm’s competitive position, which is not readily measurable.
- A good definition of operating exposure is *the extent to which the firm’s operating cash flows are affected by the exchange rate.*
How to Measure Economic (Operating) Exposure

- Should we use regression analysis?
 - Endogeneity
 - Sales are a key decision variable of managers
- From the manager’s perspective, what matters?
 - Changes in the competitive position relative to foreign competitors
 - We know how to measure this: RER (“relative PPP”)

Economic (Operating) Exposure and Real Exchange Rate

The real exchange rate index = \(q^* = \frac{s_{t+T}}{s_t} \)

If PPP holds, then \(s_{t+T} = s_t \) so \(q^* = 1 \).

- \(q^* < 1 \) → foreign country’s competitiveness improves (and U.S. competitive position worsens).
- \(q^* > 1 \) → foreign country’s competitiveness worsens (and U.S. competitiveness improves).

Determinants of Operating Exposure

- Recall that operating exposure cannot be readily determined from the firm’s accounting statements as can transaction exposure.
- The firm’s operating exposure is determined by:
 - The market structure of inputs and products: how competitive or how monopolistic the firm’s markets are
 - Example: Latest export statistics for the Eurozone
 - The firm’s ability to adjust its markets, product mix, and sourcing in response to exchange rate changes.

Managing Operating Exposure

- (i) Selecting Low Cost Production Sites
- (ii) Flexible Sourcing Policy
- (iii) Diversification of the Market
- (iv) R&D and Product Differentiation
- (v) Financial Hedging

(i) Low-Cost Production Sites

- A firm may wish to diversify the location of their production sites to mitigate the effect of exchange rate movements.
 - e.g. Honda built North American factories in (partial) response to a strong yen, but later found itself importing more cars from Japan due to a weak yen.
 - Danger of losing economies of scale from too many production sites

(ii) Flexible Sourcing Policy

- Sourcing does not apply only to components, but also to “guest workers”.
 - e.g. Japan Air Lines hired foreign crews to remain competitive in international routes in the face of a strong yen, but later contemplated a reverse strategy in the face of a weak yen and rising domestic unemployment.
(iii) Diversification of the Market

- Selling in multiple markets to take advantage of economies of scale and diversification of exchange rate risk.

(iv) R&D and Product Differentiation

- Successful R&D that allows for
 - cost cutting
 - enhanced productivity
 - product differentiation.

- Successful product differentiation gives the firm less elastic demand—which may translate into less exchange rate risk.

(v) Financial Hedging

- The goal is to stabilize the firm’s cash flows in the near term.
- Financial Hedging is distinct from operational hedging.
- Financial Hedging involves use of derivative securities such as currency swaps, futures, forwards, currency options, among others.

End Chapter Nine