Derivatives & Risk Management

• Previous lecture set:
 – Forward outright positions & payoffs + NDFs
 – Forward price vs. current & future spot prices

• This lecture set – Part II (Futures)
 – Futures vs. forward
 • trade in the risk, standardization, right of offset
 – Stock Index Futures

Part II: Futures
Futures vs. Forwards

• Fundamentals
 – participants, major contracts, exchanges

• Differences w/ forward contracts (main ones)
 – “trading in the risk” vs. “trading in the commodity”
 » right of offset
 – standardized, exchange-traded (not OTC)
 » trading vs. clearing; Dodd-Frank / EMIR changes
 – marking-to-market / risk control

• Differences b/ forward & futures prices
 – Theory vs. practice and arbitrage

Futures vs. Forwards

• Definition
 • Basic principle: similar to forwards
 • In practice: delivery rare (*most investors offset early*)

• Right of offset
 • What? Right to get out early at a *market* price
 » vs. Forward: can get out early *only* if counterparty agrees
 • Why?
 » encourages speculation (which reduces hedging costs)
 » hedgers can use gain/loss on futures to alleviate loss/gain on the underlying (idea similar to NDF; settlement differences)
 • How? Standardization + Risk control
Futures vs. Forwards 2a

• Differences w/ forward contracts (main ones)
 – 1. exchange-traded
 • Where? (http://www.futuresindustry.org/volume-.asp)
 – U.S.A.: CME-CBOT-NYMEX-KCBT; ICE-NYBOT-NYSE; …
 – Abroad: EUREX-ISE, NSE, Bovespa, Dalian, Shanghai, Kospi, etc.
 • How?
 – Historically: participants in the “pits”
 » brokers (cust.) vs. traders (own) vs. broker-traders
 » commission brokers (cust.) vs. locals (own)
 – Now: overwhelmingly (CME) or solely (ICE) electronic trading

Futures vs. Forwards 3

• Differences w/ forward contracts (main ones)
 – 2. Regulation
 – United States
 » government: CFTC (*plus* SEC, Fed, Treasury)
 » + self-regulation: futures industry (NFA), exchanges
 – Canada: markets vs. trading (*NOT Exam Material*)
 » provincial securities commissions vs. self
 » exception: WCE (*federal regulation*; now part of ICE)
 – 3. Corollaries of exchange-based trading
 – standardized contracts; right of offset
 » trading risk vs. commodity?
 – risk control mechanism
Futures vs. Forwards 4

– 3A. Contract standardization

• contract size

• expiry cycle
 » currencies (CME) and indices: M-J-S-D (peso, rand?)
 » corn (CBOT): M-M-Jul-S-D

• delivery dates
 – currencies: 3rd Wednesday of the month (delivery)
 – others: mostly 3rd Friday of the month
 » exceptions exist (ex.: KC Value Line: EOM; bond futures)

• other contract specifics
 » commodity grade, delivery arrangements (or cash settlement)

• price limits (corn: 30 cents/b., none in spot mo.) & position limits

• price quotes

Futures vs. Forwards 5

– 3A. Contract standardization (continued)

• reading futures quotes
 – terminology
 » open interest
 » ticks (cent for oil at NYMEX, 32nd of $ for bonds at CBOT, etc)
 » spot month (when the contract expires)
 » “nearby” vs. (first-, second-,...) deferred contracts
 » reversing (= offsetting) a trade

 – newspaper info
 » Hull Table 2.2, BKM
 » in class: using FT Market Data
Futures vs. Forwards 6

– 3B. Right of offset

• OTC market: Commitment
 – Parties in theory cannot get out of a forward agreement
 » Really? Non-Deliverable Forwards (NDF), G10 currencies

• Futures markets: Offset is possible
 – What? Right to get out early at a market price
 – How? offset long position by going short, & vice-versa

– 3A+3B: Trading “risk” vs. “commodity”

 – Forwards: trade in the commodity (delivery intent)
 – Futures: trade in the risk (exposure to price movements)

Futures vs. Forwards 7

– 3C. Risk control

• OTC market
 – “my word is my bond”
 » theory vs. practice (credit lines; changes since 2008)
 » Big regulatory changes after 2010 (Dodd-Frank, EMIR)

• futures markets
 – clearing house & position limits
 – margin requirements
 » opportunity cost; cash vs. T-bills
 – marking to market
Risk Control through Clearing House

• What?
 • Futures
 » exchange-run (exception: CME-CBOT used to share)
 • Options: Options Clearing Corporation (OCC)
 » owned jointly by all U.S. options exchanges
 » 12 options (including BATS) + 4 small futures exchanges

• Why?
 • market liquidity vs. knowing counterparts
 • margin posts and margin calls vs. “word is bond”

Risk Control through Clearing Houses 2

• How?
 • effective “buyer” and “seller” of all futures
 » counter-party to all trades
 » guarantees execution
 » “open interest”
 • in practice
 » reversing trades (offsetting)
 » how do deliveries get carried out?
 • risk for the clearing house
 » default
Margins

• Basic Idea → security deposit
• Risk control
 • margins and margin calls
 » for both long and short parties
• Margin determinants
 • volatility of underlying asset
 – Determines extent of potential loss or gain
 • naked position vs.
 covered position (hedge, arbitrage, or spread)

Futures Marking-to-Market

• What?
 • daily settlement of gains and losses
 • plus “resetting” of all positions
• Why?
 • risk control
 • hedgers vs. speculators
• How?
 • numerical example
• Consequence (NOT exam material)
 • difference between futures price and forward price
Futures Marking-to-Market 2

- **Forward price**
 - delivery price
 - price at which the underlying asset will be delivered
 - agreed upon at time forward is entered into
 - forward/futures price
 - delivery price that would make the contract have 0 value
 - changes during life of contract (*but, who cares...*)
 - *Forwards: who cares? Futures: it really matters!*
 - forward price = delivery price
 - when contract is created

Futures Marking-to-Market 3

- **Futures price**
 - delivery price
 - price at which the underlying asset will be “delivered”
 - agreed upon at time futures is bought
 - futures price
 - delivery price that would make the contract have 0 value
 - changes during life of contract (*and, it matters*)
 - futures price = delivery price
 - when contract is bought
Futures Marking-to-Market 4

• Futures price (cont’d)
 – marking to market
 – replacement of the futures contract at the end of trading
 – every day (at least)
 – by a new contract with new delivery price
 » delivery date unchanged
 » new delivery price = futures price at close

Futures Marking-to-Market 5

<table>
<thead>
<tr>
<th>time</th>
<th>futures price (a)</th>
<th>margin requirement</th>
<th>cash-flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-15-05 (morning)</td>
<td>0.75 $/SF</td>
<td>$2,150 (b)</td>
<td>- $2,150 (c)</td>
</tr>
<tr>
<td>09-15-05 (close)</td>
<td>0.755 $/SF (d)</td>
<td></td>
<td>+ $ 625 (d)</td>
</tr>
<tr>
<td>09-16-05 (close)</td>
<td>0.752 $/SF (e)</td>
<td></td>
<td>- $ 375 (f)</td>
</tr>
<tr>
<td>09-19-05 (close)</td>
<td>0.74 $/SF</td>
<td></td>
<td>- $ 1,500 (g) + $ 2,150 (h)</td>
</tr>
<tr>
<td>09-21-05</td>
<td>+SF 125,000 (i)</td>
<td></td>
<td>+SF 125,000 (i) + $ 92,500 (i)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- $ 93,750 (i)</td>
</tr>
</tbody>
</table>
Futures Marking-to-Market 6

• Differences b/ forward & futures prices
 – in theory
 • interest rates known
 • stochastic interest rates
 – interest rate vs. futures price (or price of underlying asset)
 » positive correlation: futures price > forward price
 » negative correlation: futures price < forward price
 – in practice / arbitrage

Index Futures

• Stock-market indices
 • basic idea
 • various types

• Stock Index Futures
 • basic idea
 • US vs. other countries
 • index futures as investment tools
 » domestic example (alternative to cash purchases)
 » indirect international diversification tool
Stock Market Indices

• Idea
 • measure of overall performance

• Examples
 – arithmetic: price-weighted (DJI)
 – stock choice
 – arithmetic: market-value weighted (S&P 500)
 – market value of equity, broader, NYSE+NASDAQ
 – geometric: Value-Line
 – downward bias (relative to return on eq.-weighted portf.)

Market Indices: DJIA (NOT Exam Material)

• Computation
 • price-weighted
 • splits, stock dividends > 10% (BKM4 Tables 2.3 & 2.4)

• Divisor example
 – Time
 – DJI (no split) \[
 \frac{25 + 100}{2} = \frac{25 + 50}{1.2} \quad t
 \]
 – DJI (split, d=2) \[
 \frac{30 + 90}{2} = \frac{30 + 45}{1.2} \quad t+1
 \]
 – DJI (split, d=75/62.5) \[
 \frac{30 + 45}{2} = \frac{30 + 45}{1.2} \quad Return
 \]
Market Indices: S&P 500 (NOT Exam Material)

• Computation
 - value-weighted
 - No need to adjust for splits or stock dividends

• Example
 - Time \(t \) \(t+1 \) Return
 - DJI (no split) \(\frac{25+100}{2} \) \(\frac{30+90}{2} \) -4%
 - S&P (no split) \(\frac{100 \times \frac{500+100}{500+100}}{500+100} \) \(\frac{115 \times \frac{600+90}{500+100}}{500+100} \) +15%
 - S&P (split) \(\frac{100 \times \frac{500+100}{500+100}}{500+100} \) \(\frac{115 \times \frac{600+90}{500+100}}{500+100} \) +15%

Interpreting Stock Market Indices

• DJI
 - price-weighted
 - gives return on portfolio with 1 share of each stock

• S&P 500
 - market-value-weighted
 - gives return on “market” portfolio (use for index funds)

• Value-Line
 - Not representative of the return on any portfolio
Other Relevant Market Indices

• Equally-weighted indices
 • same dollar weight on each stock
 • need to rebalance
• Foreign indices (http://finance.yahoo.com/intlindices)
 – FTSE ("Footsie")
 • Value-weighted
 – Nikkei
 • 225: price-weighted; 300: value-weighted
 – DAX, CAC-40, TSE-300 Composite, etc.

Stock Index Futures

• Idea
 • cash-settled futures contract ($nbr \times \text{index value})
 • reduces transactions costs
• Types
 • US: DJIA 30, S&P 500, Kansas City Value Line, NYSE, …
• Why Popular
 • allows construction of cheap synthetic stock positions
 • usefulness for international portfolio diversification
 • allows hedging and arbitrage
Stock Index Futures 2

- Some specific items (*microstructure*)
 - Cash or actual delivery?
 - example: S&P-500 on the CME
 » short position: gives $250 \times S_T$ (*value of index at maturity*)
 » long position: gives $250 \times F_{t,T}$ (*delivery price*)
 » if $F_{t,T} = S_T > F_{t,T}$, then short owes $250(S_T - F_{t,T})$ to long
 - “mini” index: CME’s mini
 » S&P500 mini ($50 vs. $250; 1pt = 50c vs. $2.50 per contract)
 » Nasdaq-100 ($20 vs. $100; 1pt = 20c vs. $1 per contract)
 - foreign index futures traded in the United States
 » settlement is only in U.S. dollar
 » 2 sources of risk: FX & basis (“quantos”)
 » usefulness in practice: Jorion & *al.* (*JPM* 1993)

Stock Index Futures 3

- Synthetic stock positions
 - Idea
 - apply future-spot parity
 - investor can
 » buy shares of all stocks in the index (*practical? ETFs*)
 » *or*
 » go long index futures *and* buy T-bills to cover settlement
 - If you wish to speculate & are
 » *bullish*: hold long futures position, buy T-bills
 » *bearish*: opposite
Stock Index Futures 4

• Synthetic stock positions
 • example
 » TSE-35 is 300 for spot and 303 for 3-month
 » multiplier is $100
 » 3-month interest rate = 1% (annualized = 4%)
 » investor wants to invest $30m in Canadian mkt for 3 months

 ➔ Go long TSE futures & buy $30 mil. worth of T-bills
 or
 ➔ Buy $30 mil. in stocks making up the TSE-35

Stock Index Futures 5

• Synthetic stock positions (continued)
 • example: returns from both approaches?

 ➔ Go long futures & buy $30 mil. worth of T-bills

 » $30m in T-bills at 1% will be worth $30.3m in 3 months
 contract price = 303, multiplier = $100

 » so, go long $30,300,000/(303x$100) = 1,000 contracts

 » in 3 months, you pocket: \((S_T - 303) \times 100,000\) (why \(S_T\)?)
 plus you get your return on T-bills: $30,300,000

 » Portfolio worth at \(T\): \((S_T - 303) \times 100,000 + 30,300,000\)
Stock Index Futures 6

• Synthetic stock positions (continued)
 • example: returns from both approaches?
 → Buy $30 mil in stocks making up the TSE-35
 » $30m in TSE-35
 contract price = 300, multiplier = $100
 » so, buy spot $30,000,000 / (300x$100) = 1,000 “contracts”
 (in practice? TSE makes spot contracts available)
 » in 3 months, you have a portfolio worth:
 \[S_T \times 100,000 \]

Stock Index Futures 7

• Synthetic stock positions
 • example (continued) – what if multiplier were $500?
 – TSE 35 is 300 for spot and 303 for 3-month hence
 – 3-month interest rate = 1%
 – investor wants to invest $30m in Canadian mkt for 3 months
 » go long 200 contracts: 200 x 500$ (multiplier) \times 300
 – buy T-bills to cover payment of futures price
 » 200 x 500 x 303 / (1+1%) = $30m
 – at maturity: net worth = 200 x 500 x S_T
 » 200 x 500 x (S_T - F_0) = 100,000 S_T - $30.3m
 » $30m(1.01) = $30.3m
Stock Index Futures 8

• Synthetic stock positions
 • example (continued) – did we forget anything?
 » Dividends…

 • \(F = S (1 + r - d) \) (Assume delivery in 1 yr.)
 » if \(S = 1,000 \), \(r = 4\% \), \(d = 2\% \)
 \(\Rightarrow \) Equilibrium \(F = 1000 \times (1 + 0.04 - 0.02) = 1020 \)

Stock Index Futures 9

• Index futures in practice: Investing Abroad
 • idea: minimize transactions costs
 • risks:
 » basis risk
 » FX risk? (quantos)
 » arbitrage?
 • example
Stock Index Futures: “Arb”

- Index futures in practice: Index arbitrage
 - idea: exploit deviations from parity
 - Triple (now “quadruple”) witching hour
 - 4 Fridays per year
 » index futures + index option + some ind’l stock options
 » all expire at same time
 » exception (S&P 500)
 - volatility
 » supposedly increases (program trading)
 » fundamentals vs. market depth
 » price levels vs. arbitraging price differences

Stock Index Futures: “Arb” 2

- Index futures in practice: Index arbitrage
 - \[F = S (1 + r - d) \]
 - You are a money market fund manager & observe
 - 3 months before S&P 500 futures settlement: \(F=1,030 \)
 » \(S = 1000, r =4\%, d = 2\%, \text{ but } F = 1030 \)
 » a spot 3-month T-bill earns 4% per annum or 1% per qtr.
 » a \text{ synthetic T-bill} earns __?_
 - When to enter & what effect on markets
 » convergence will mean that you will earn…. by…..
 » exiting (“sell on close” or exit early?)
Stock Index Futures: Hedging

• Some specific items
 – Basis risk
 – basis = futures price - spot price
 – convergence property
 » do futures price = spot price at maturity?
 » “Yes” for own hedges
 Caveat: compare apples to apples (embedded options?)
 » “Maybe” for cross hedges

Stock Index Futures: Hedging 2

• Hedging stock portfolios
 • ratios to hedge
 – Q1. When would a 1:1 ratio work?
 – Q2. Should you hedge unsystematic risk (individual stock, industry fund) with Stock Index Futures?
 – Hedge Ratios \(\rightarrow \) Use betas or regression
 » Betas: \(HR = \frac{\text{Portfolio B}}{\text{(Stock Index B)}} \)
 » Regression: \(S = a + HR \times F + e \)