Derivatives & Risk Management

- Previous lecture set:
 - Futures vs. forwards
 - Stock Index Futures

- This lecture set – Part III
 - Interest-Rate Derivatives
 * FRAs
 * T-bills futures & Euro$ Futures

Part III:
Interest Rate Derivatives
Derivatives “of Interest”

- **Interest-Rate Derivatives**
 - Contracts on short-term interest rates
 - FRAs, Eurodollar futures *(also, T-bills futures)*
 - (Single-currency) Interest-rate (IR) Swaps
 - Futures on long-term interest rates
 - e.g., T-bonds & T-notes futures, Bund futures

- **Currency derivatives**
 - Forwards and futures on FX; FX swaps
 - Currency swaps (= *cross-currency interest-rate swaps*)

- **Relative importance:** ISDA + BIS figures

Forward Interest Rates & FRA’s

- **Background**
 - bond pricing
 - term structure of interest rates & pure yield curve
 - forward interest rate *(aka implied forward short rate)*

- **Forward rate agreements**
 - market microstructure
 - locking in rates with FRA’s
Bond Pricing

- Equation for a **coupon** bond:

 \[P = PV(\text{annuity}) + PV(\text{final payment}) \]

 \[= \sum_{t=1}^{T} \frac{\text{coupon}}{(1+ytm)^t} + \frac{\text{Par}}{(1+ytm)^T} \]

- Terminology: \(T \) = maturity; \(ytm \) = yield to maturity

- Example: \(C_t = $40 \); \(\text{Par} = $1,000 \); disc. rate = 4%; \(T = 60 \)

 \[P = \sum_{t=1}^{60} \frac{$40}{(1+0.04)^t} + \frac{$1,000}{(1+0.04)^{60}} = $904.94 + $95.06 = $1,000 \]

Bond Pricing 2

- Equation for a **zero**-coupon bond:

 \[P = PV(\text{final payment}) \]

 \[= \frac{\text{Par}}{(1+y)^T} \]

- Terminology: \(y \) = T-year spot rate

- Example: \(C_t = $0 \); \(\text{Par} = $1,000 \); disc. rate = 4%; \(T = 60 \)

 \[P = \frac{$1,000}{(1+0.04)^{60}} = $95.06 \]
Bond Pricing 3

• Why focus on zeroes?
 • The \(ytm \) of coupon bonds is an average of the spot rates of each of the cash flows (idea: reinvestment)

\[
P = \sum_{i=1}^{T} \frac{\text{Coupon}_t}{(1+y_{tm})^T} \frac{\text{Par}}{(1+y_{tm})^T} = \sum_{i=1}^{T} \frac{\text{Coupon}_t}{(1+y_t)^T} \frac{\text{Par}}{(1+y_T)^T}
\]

• The \(ytm \) of zeroes (i.e., the spot) is not corrupted by these reinvestment issues

Term Structure of Interest Rates

• Basic question
 • link between spot rates (= \(ytm \) on zeroes) & maturity

• Bootstrapping short rates from strips
 • forward rates and expected future short rates

• Interpreting the term structure
 • does the term structure contain information?
 • certainty vs. uncertainty

• Recovering short rates from coupon bonds
“Term”inology

• Term structure = yield curve
 • = plot of the YTM as a function of bond maturity
 – Pure yield curve (*special case*)
 • = plot of the spot rate by time-to-maturity

• Short rate vs. spot rate
 • both are “zero rates”
 • 1-period rate vs. multi-period yield (*BKM4 Fig. 14.3*)
 • spot rate = current rate appropriate to discount a cash-flow of a given maturity

Extracting Info re: Short Interest Rates

• From zeroes
 • non-linear regression analysis
 • bootstrapping

• From coupon bonds (*NOT Exam Material*)
 • system of equations
 • regression analysis (no measurement errors)

• Certainty vs. uncertainty
 • forward rate vs. expected future (spot) short rate
(Implied) Forward Interest Rates

• Definition #1
 • forward interest rate for a given period in the future
 • = interest rate implied by current spot rates

• Definition #2
 • “break-even rate”
 • that equates the payoffs of roll-over and LT strategies

Bootstrapping Fwd Rates from Zeroes

• Forward rate
 • “break-even rate”
 • equating the payoffs of ST roll-over vs. LT strategies
 • \(n \) years @ \(y_n \) vs. \((n-1)\) years @ \(y_{n-1} \) plus one year at \(f_n \)
 \[
 n^*y_n = (n-1)^*y_{n-1} + 1^*f_n
 \]

• Intuitive formula
 • \(f_1 = y_1 \) and \(f_n = n^*y_n - (n-1)^*y_{n-1} \)
Bootstrapping Fwd Rates from Zeroes 2

• Forward rate
 • “break-even rate”
 • equating the payoffs of ST roll-over vs. LT strategies
 • \(n \) years @ \(y_n \) vs. \((n-1) \) years @ \(y_{n-1} \) plus one year at \(f_n \)
 \[
 (1 + y_n)^n = (1 + y_{n-1})^{n-1}(1 + f_n)
 \]

• Precise formula
 • \(f_1 = y_1 \) and \(f_n = \frac{(1 + YTM_n)^n}{(1 + YTM_{n-1})^{n-1}} - 1 \)

Bootstrapping Fwd Rates from Zeroes 3

• Example 1:
 • BKM4 Table 14.2 & Fig.14.1; BKM9 T15.1 & Fig.15.3
 • 4 bonds, all zeroes (reimbursable at par of $1,000)

<table>
<thead>
<tr>
<th>T (maturity)</th>
<th>Price</th>
<th>YTM (spot rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$925.93</td>
<td>8%</td>
</tr>
<tr>
<td>2</td>
<td>$841.75</td>
<td>8.995%</td>
</tr>
<tr>
<td>3</td>
<td>$758.33</td>
<td>9.66%</td>
</tr>
<tr>
<td>4</td>
<td>$683.18</td>
<td>9.993%</td>
</tr>
</tbody>
</table>
Bootstrapping Fwd Rates from Zeroes

- Forward interest rate for year 1

 \[\frac{\$925.93}{(1+f_1)} = \frac{\$1,000}{(1+y_1)} \Rightarrow f_1 = y_1 = 8\% \]

- Forward interest rate for year 2

 \[\frac{\$841.75}{(1+f_1)(1+f_2)} = \frac{\$1,000}{(1+8\%)(1+f_2)} = \frac{\$925.93}{(1+f_2)} \]
 \[\Rightarrow f_2 = 10\% \]

Bootstrapping Fwd Rates from Zeroes

- Forward rates for years 3 and 4

 - keep applying the method
 - you find \(f_3 = 11\% = f_4 \)

- General Formula

 \[f_1 = YTM_1 \]

 \[1 + f_n = \frac{(1 + YTM_n)^n}{(1 + YTM_{n-1})^{n-1}} \]
Bootstrapping Fwd Rates from Zeroes

Example 2: Intuitive ("quick & dirty") forward rates

<table>
<thead>
<tr>
<th>Zero-Coupon Rates</th>
<th>Bond Maturity</th>
<th>(1yr) Fwd Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y_1 = 12.00%$</td>
<td>1</td>
<td>$f_1 = y_1 = 12%$</td>
</tr>
<tr>
<td>$y_2 = 11.75%$</td>
<td>2</td>
<td>$f_2 \approx 11.5%$</td>
</tr>
<tr>
<td>$y_3 = 11.25%$</td>
<td>3</td>
<td>$f_3 \approx 10.25%^*$</td>
</tr>
<tr>
<td>$y_4 = 10.00%$</td>
<td>4</td>
<td>$f_4 \approx 6.25%^*$</td>
</tr>
<tr>
<td>$y_5 = 9.25%$</td>
<td>5</td>
<td>$f_5 \approx 6.25%^*$</td>
</tr>
</tbody>
</table>

*: If computed exactly, $f_3 = 10.26\%; f_4 = 6.33\%; f_5 = 6.30\%$ (we'll show this below)

Example 2: "Formal" forward rates

<table>
<thead>
<tr>
<th>Zero-Coupon Rates</th>
<th>Bond Maturity</th>
<th>(1yr) Fwd Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y_1 = 12.00%$</td>
<td>1</td>
<td>$f_1 = y_1 = 12%$</td>
</tr>
<tr>
<td>$y_2 = 11.75%$</td>
<td>2</td>
<td>$f_2 = 11.5%$</td>
</tr>
<tr>
<td>$y_3 = 11.25%$</td>
<td>3</td>
<td>$f_3 = 10.26%^*$</td>
</tr>
<tr>
<td>$y_4 = 10.00%$</td>
<td>4</td>
<td>$f_4 = 6.33%^*$</td>
</tr>
<tr>
<td>$y_5 = 9.25%$</td>
<td>5</td>
<td>$f_5 = 6.30%^*$</td>
</tr>
</tbody>
</table>

*: If computed quickly, $f_3 = 10.25\%; f_4 = 6.25\%; f_5 = 6.25\%$
Fwd Rate & Expected Future Short Rate

• **Q:** Does IFR equal expected short? (is $f_t = r_t$?)
• **A:** Interpreting the yield curve under uncertainty
 – Short perspective *(often observed \rightarrow exam material)*
 – liquidity preference theory (investors)
 – liquidity premium theory (issuer)
 – *Others: NOT Exam Material*
 • Expectations hypothesis
 • Long perspective
 • Market Segmentation *vs.* Preferred Habitat

Fwd Rate & Exp. Future Short Rate 2

• Short perspective
 • liquidity preference theory (“short” investors)
 » investors need to be induced to buy LT securities
 » example: 1-year zero at 8% vs. 2-year zero at 8.995%
 • liquidity premium theory (issuer)
 » issuers prefer to lock in interest rates
 • $f_2 \geq E[r_2]$
 • $f_2 = E[r_2] +$ liquidity *(or risk)* premium
Fwd Rate & Exp. Future Short Rate 3

• Long perspective \textit{(NOT Exam Material)}
 • “long investors” wish to lock in rates
 » roll over a 1-year zero at 8%
 » or lock in via a 2-year zero at 8.995%
 • $E[r_2] = f_2$
 • $f_2 = E[r_2]$ - liquidity \textit{(or risk)} “premium”

Fwd Rate & Exp. Future Short Rate 4

• Expectation Hypothesis \textit{(NOT Exam Material)}
 • risk premium = 0 and $E[r_2] = f_2$
 • idea: “arbitrage”

• Market segmentation theory \textit{(NOT Exam Material)}
 • idea: clienteles
 » ST and LT bonds are not substitutes
 • reasonable?

• Preferred Habitat Theory \textit{(NOT Exam Material)}
 • investors do prefer some maturities
 • temptations exist
Fwd Rate & Exp. Future Short Rate 5

• In practice
 • liquidity preference + preferred habitat
 » hypotheses have the edge

• Example 2 (continued)

Fwd Rate & Exp. Future Short Rate 6

• Example 2: “Quick & dirty” forward rates

<table>
<thead>
<tr>
<th>Zero-Coupon Rates</th>
<th>Bond Maturity</th>
<th>(1yr) Fwd Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>y₁ = 12.00%</td>
<td>1</td>
<td>f₁ = y₁ = 12%</td>
</tr>
<tr>
<td>y₂ = 11.75%</td>
<td>2</td>
<td>f₂ ≈ 11.5%</td>
</tr>
<tr>
<td>y₃ = 11.25%</td>
<td>3</td>
<td>f₃ ≈ 10.25%*</td>
</tr>
<tr>
<td>y₄ = 10.00%</td>
<td>4</td>
<td>f₄ ≈ 6.25%*</td>
</tr>
<tr>
<td>y₅ = 9.25%</td>
<td>5</td>
<td>f₅ ≈ 6.25%*</td>
</tr>
</tbody>
</table>

*: If computed exactly, f₃ = 10.26%; f₄ = 6.33%; f₅ = 6.30% (we’ll show this below)
Example 2: “Quick” expected future short rates

<table>
<thead>
<tr>
<th>Period</th>
<th>(1yr) Fwd Rate</th>
<th>Expected short rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(f_1 = y_1 = 12%)</td>
<td>(N-A)</td>
</tr>
<tr>
<td>2</td>
<td>(f_2 \approx 11.5%)</td>
<td>(E(y_1') = r_2 \approx 11%)</td>
</tr>
<tr>
<td>3</td>
<td>(f_3 \approx 10.25%)</td>
<td>(E(y_1''') = r_3 \approx 9.75%)</td>
</tr>
<tr>
<td>4</td>
<td>(f_4 \approx 6.25%)</td>
<td>(E(y_1''') = r_4 \approx 5.75%)</td>
</tr>
<tr>
<td>5</td>
<td>(f_5 \approx 6.25%)</td>
<td>(E(y_1''''') = r_5 \approx 5.75%)</td>
</tr>
</tbody>
</table>

*: Assumes a constant 0.5% per year liquidity premium

Example 3:
- short term rates: \(r_1 = r_2 = r_3 = 10\% \)
- liquidity premium = constant 1% per year

\(y_1 = r_1 = 10\% \)

\[
y_2 = \sqrt{(1 + r_1)(1 + f_2)} - 1 = \sqrt{(1 + 10\%)(1 + 10\% + 1\%)} - 1 = 10.5\%
\]

\(y_3 = \frac{1}{3} \sqrt{(1 + r_1)(1 + f_2)(1 + f_3)} - 1 = \frac{1}{3} \sqrt{(1 + 10\%)(1 + 11\%)(1 + 11\%)} - 1 = 10.67\% \)
Measurement: Zeroes vs. Coupon Bonds

- **Zeroes**
 - ideal
 - lack of data may exist (need zeroes for all maturities)

- **Coupon Bonds** *(Next 4 pages NOT Exam Material)*
 - plentiful
 - coupons and their reinvestment
 - low coupon rate vs. high coupon rate
 - short term rates → they may have different YTM

Measurements with Coupon Bonds

- **Example**
 - short rates are 8% & 11% for years 1 & 2; certainty
 - 2-year bonds; Par = $1,000; coupon = 3% or 12%

 - **Bond 1:**
 \[
 \frac{30}{(1+8\%)} + \frac{1,030}{(1+8\%)(1+11\%)} = 894.78 \Rightarrow YTM = 8.98\%
 \]

 - **Bond 2:**
 \[
 \frac{120}{(1+8\%)} + \frac{1,120}{(1+8\%)(1+11\%)} = 1,053.87 \Rightarrow YTM = 8.94\%
 \]
Measurements with Coupon Bonds 2

• Example
 • 2-year bonds; Par = $1,000; coupon = 3% or 12%
 • Prices: $894.78 (coupon = 3%); $1,053.87 (coupon = 12%)
 • Year-1 and Year-2 short rates
 » $ 894.78 = d_1 \times 30 + d_2 \times 1,030
 » $ 1,053.87 = d_1 \times 120 + d_2 \times 1,120
 • Solve the system: $d_2 = 0.8417$, $d_1 = 0.9259$
 • Conclude ...

Measurements with Coupon Bonds 3

• Example (continued)

\[
r_1 = \frac{1}{d_1} - 1 = \frac{1}{0.9259} - 1 \Rightarrow r_1 = 8\%
\]

\[
r_2 = \frac{1}{(1 + r_1) \times d_2} - 1 = \frac{1}{(1 + 8\%) \times 0.8417} - 1 \Rightarrow r_2 = 10\%
\]
Measurements with Coupon Bonds 4

- Practical problems
 - pricing errors
 - taxes
 » are investors homogenous?
 - investors can sell bonds prior to maturity
 - bonds can be called, put or converted
 - prices quotes can be stale
 » market liquidity

- Estimation
 - statistical approach

Forward Rate Agreements

- What
 - contracts between 2 parties
to lock in forward interest rates

- How?
 - cash-settled contract
 » payment = interest cost change
 » on a nominal (or notional) sum of money
 » if interest rate at that time ≠ agreed-upon interest rate
 - seller pays the buyer if interest rate goes up
 - buyer pays the seller if interest rate goes down
Forward Rate Agreements 2

• Amount to be paid

\[
\text{amount paid by the FRA seller} = \left(\text{nominal amount of contract}\right) \times \frac{(S-A) \times (\# \text{ days the FRA runs})}{(\# \text{ days in the year})} \times \frac{1 + S \times (\# \text{ days the FRA runs})}{(\# \text{ days in the year})}
\]

• Hedger
 • By selling an FRA, can lock in interest on deposit
 • By buying an FRA, can lock in cost of loan

• Example (Handout & PS#3)
 • finding quotes & valuing FRA’s
 • Trading FRAs (arbitraging vs. return maximization)

Interest-Rate Derivatives (Recap. slide)

• Forward rate agreements (FRA)
 • OTC contract; users "lock in" implied forward rate

• Interest Rate Futures (IRF): ED & T-Bill Futures
 • exchange traded futures contracts
 • underlying: 90-day interest rate (contrast with FRA)

• Interest-rate Swaps
 • OTC contract; converts exposure: fixed <-> floating
 • Bundle of “time against time +6 months” FRA’s

• Government bonds futures
 • Exchange-traded futures on a long-term government bond
T-Bill & Eurodollar Futures

- Money-market instruments
 - zero-coupon bonds
 - quotes vs. actual yields
- vs. Long-term bonds
 - quotes
 - T-notes and T-bonds
 - corporate bonds
 - accrued interest

Short-term Bond Prices & Yield Quotes

- T-bills
 - sold at discount to par (typ. $10,000; minimum is $1,000)
 - “capital gain” treated as interest; federal tax only
 - primary market: U.S. Treasury auctions
 - weekly (Mondays; maturity = mostly 91 or 182 days)
 - formerly: every trimester (52 weeks)
 - secondary market
- Other short-term instruments
 - same conventions for quotes (similar idea for futures)
Short-term Bond Prices & Yield Quotes 2

• Yields on T-Bills

 – bank discount yield: \[\frac{\text{Par} - \text{Price}}{\text{Par}} \times \frac{360}{n} \]
 » used for futures

 – bond equivalent yield: \[\frac{\text{Par} - \text{Price}}{\text{Price}} \times \frac{365}{n} \]

 – effective annual yield: \[\frac{\text{Par}^{\frac{365}{n}}}{\text{Price}} - 1 \]

Short-term Bond Prices & Yield Quotes 3

• BDY example

 • a 60-day T-bill has a BDY of 6.81% \((based on ask)\)
 » in the newspaper, the bill would be quoted at
 \[100(1 - 0.0681/6) = 98.865 \]
 » the bill’s ask price would be
 \[= 10,000 \times [100\% - (6.81\% / 6)] \]
 \[= 9,886.50 \]
 » the bill’s effective annual yield would be
 \[\text{EAY} = (10,000 / 9,886.50)^{(365/60)} - 1 \]
 \[= 7.19\% \]
Eurodollar Futures

• What?
 • futures contract on 3-month, $1m eurodeposit
 » underlying = hypothetical deposit “made” at LIBOR,
 starting 3rd Wed. of delivery month
 • traded on CME/SIMEX, cash-settled
 • maturities up to 10 years into the future

• Our discussion
 • market microstructure
 • futures rate
 » vs. forward rate
 » pricing: theory, empirics and practice

Eurodollar Futures 2

• Market microstructure
 • contracts available
 – long maturities (up to 10 years)
 » M-J-S-D
 – short maturities
 » more months
 • settlement
 – in cash
 – 3rd Wednesday of delivery month (why?)
 – last mark-to-market rate is 90-day LIBOR, settlement day
 • underlying variable = 3-month Libor at settlement
Eurodollar Futures 3

• Pricing example
 • Quotes
 - Z = index value = 100 - (annualized) futures deposit rate
 - contract value
 = $10,000 [100 - 0.25(1-Z)] = $1,000,000 [1 - 0.25 (100-Z)\%]
 • Example: June 2003 futures; Z= 95.53
 - annualized futures deposit rate = (100-95.53)\% = 4.47\%
 - contract value = $1,000,000[(100-0.25 (100-95.53))\%] = $988,825
 » 1 b.p. change ↵ $25 change in contract value
 • final marking to market
 - on expiration day, futures price = 100-R
 » R = 90-day Libor (quarterly basis and actual/360 day count)

Eurodollar Futures 4

• FRA and IRF as hedging tools
 – FRA
 • seller (short) pays the buyer if interest rate goes up
 » so: seller locks in the interest return on a deposit
 » i.e: seller gets fixed rate (and pays variable rate)
 • buyer (long) pays the seller if interest rate goes down
 » so: buyer locks in the cost of a loan
 » i.e.: buyer gets variable rate (and pays fixed rate)
 – IRF: just the opposite
 » long (“buyer”) locks in the interest return on a deposit
 » short (“seller”) locks in the cost of a loan
Eurodollar Futures 5

- FRA and IRF as hedging tools (*continued*)
 - FRA
 - if you want to hedge against rates’ going up,
 then, buy an FRA
 » buyer locks in cost of loan
 » i.e., hedged buyer pays fixed rate
 - IRF: just the opposite
 - if you want to hedge against rates’ going up,
 then “*keep your shorts on*”
 » i.e., sell an IRF

Eurodollar Futures 6

- Futures rate *vs.* forward rate
 - theory
 - forward rate < futures rate (*why?*)
 - empirically
 - short maturity
 » not much of a difference
 - long maturity
 » much larger difference
 - practice (---/---)
Eurodollar Futures 7

• Futures rate vs. forward rate
 – (---/---) in practice
 • assume interest rates are continuously compounded
 • forward rate = futures rate - (1/2) \(\sigma^2 t_1 t_2 \)
 – where
 » \(\sigma \) = annual % std deviation of LIBOR
 » \(t_1 \) = contract delivery (in years)
 » \(t_2 \) = end of delivered eurodeposit (in years)
 • numerical example?

T-Bill Futures (NOT Exam Material)

• Basic idea
 • similar to eurodollar futures (size, dates, etc.)
 • Differences:
 – underlying variable = 13-week (3-mo) T-Bill at settlement
 – Tick = \(\frac{1}{2} \) point (vs. 1 pt for Eurodollar futures)
 – Not traded since 2003! Only of historical interest

• Quotes
 • \(Z \leftrightarrow \) index; contract value = $1m [1 - 0.25 (100-Z)\%]
 • Example:
 – 1.25% T-bill disc. rate for delivery month \(\rightarrow Z=98.75 \)
T-Bill Futures 2

• Market microstructure
 • contracts available at the CME
 – maturities
 » M-J-S-D
 – nominal value: $1 million

• settlement
 – in cash
 – 3rd Wednesday of delivery month
 – last mark-to-market rate is T-bill rate, settlement day
 » highest discount rate accepted in U.S. Treasury’s 91-day
 T-bill auction in week of 3rd Wed. of contract month