Derivatives & Risk Management

- Interest-rate derivatives
 - FRA’s & T-Bill futures
 - Swaps
 - Hedging International Financing Transactions
 - All-In Cost of Capital Computations
- T-Bond & T-Note futures
 - This lecture

Part III:
Interest Rate Derivatives
Interest-Rate Derivatives *(Recap. slide)*

- Forward rate agreements (FRA)
 - OTC contract; users "lock in" implied forward rate

- Interest Rate Futures (IRF) and T-Bill Futures
 - exchange traded futures contracts
 - underlying: 90-day interest rate *(contrast with FRA)*

- Interest-rate Swaps
 - OTC contract; converts exposure: fixed <-> floating
 - Bundle of “time against time+6months” FRA’s

- Government bonds futures
 - Exchange-traded futures on a long-term government bond

T-Bond & T-Note Futures: Outline

- Bond quotes
 - money-market instruments
 - T-notes & T-bonds
 - corporate & municipal bonds

- T-Bond & T-Note futures
 - Pricing
 - Conversion factor
 - Options, including *wild card*
Bond Prices and Yield Quotes

- Money-market instruments
 - zero-coupon bonds
 - quotes vs. actual yields

- Long-term bonds
 - quotes
 » US government T-notes & T-bonds
 » corporate & municipal bonds
 - accrued interest

Long Term Bond Prices & Yield Quotes

- US government
 - T-Notes (< 10 years) vs. T-Bonds (10 to 30 years)
 - denominations (> $1,000), coupons (semi-annual)
 - bonds may be callable (typically last 5 years)
 - prices
 - quoted bond prices
 » (percentage + 32nds of 1%) of face value
 - accrued interest
 » n/N = actual # of days / actual # of days in ref. period
 » example: March 1 to July 7 → n = 124 days
Long Term Bond Prices & Yield Quotes 2

- Corporate & Municipal Bonds (NOT Exam Material)
 - denominations (> $1,000), coupons (semi-annual)
 - bonds may be call able (or, more rarely, put able)
 - prices
 - quoted bond prices
 - munis: (% + 8ths %) of face value
 - corporates (decimal): (% + 100ths %) of face value
 - accrued interest
 - 30/360 (vs. T-bonds: convention = actual/actual)
 - example: March 1 to July 7 = 4*30+2=122 days

T-Bond & T-Note Futures

- Contracts available (CBOT; Hull, Table 6.1)
 - T-bond futures
 - 2-year, 5-year, 10-year T-note futures
 - M-J-S-D cycle

- Long party
 - pays: quoted futures price * conversion factor + accrued interest
 (for each $100 of quoted face value)

- Short party
 - may deliver any bond – with some restrictions
T-Bond & T-Note Futures 2

- Options for short party
 - 1. bond to deliver
 - range of bonds can be delivered
 - dealt with by:
 » limit in bonds that can be delivered
 » conversion factor (varies with bond delivered)
 - 2. timing
 » timing sequence and futures contract trading
 - 3. wild card
 » closing times: bond market’s vs. futures market’s

T-Bond & T-Note Futures 3

- 1. Delivery option

<table>
<thead>
<tr>
<th>Futures contract</th>
<th>Time to maturity (from 1st day of delivery month)</th>
<th>Face value</th>
<th>Price quotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-bond</td>
<td>m > 15 years not callable for 15 yrs</td>
<td>$100,000</td>
<td>$ and 32nds of $ and 1/2 32nds of $</td>
</tr>
<tr>
<td>10-year T-note</td>
<td>10 yrs >m > 6.5 yrs not callable for 6.5 yrs</td>
<td>$100,000</td>
<td>$ and 32nds of $ and 1/2 32nds of $</td>
</tr>
<tr>
<td>5-year T-note</td>
<td>5.25 yrs >m > 4.16 yrs</td>
<td>$100,000</td>
<td>$ and 32nds of $ and 1/4 32nds of $</td>
</tr>
<tr>
<td>2-year T-note</td>
<td>5.25 yrs >m > 1.75 yrs</td>
<td>$200,000</td>
<td>$ and 32nds of $ and 1/4 32nds of $</td>
</tr>
</tbody>
</table>
T-Bond & T-Note Futures 4

• Conversion factor
 • why?
 » short party has large range of bond choices
 » so the playing field must be “leveled”
 • what?
 » commit short party to deliver “nominal” 6% T-bond
 (used to be 8% before March 2000; still 6% despite...)
 • how?
 » adjust bond price (to be paid by long party)
 » as if its annual YTM were 6% (3% semi-annual)
 » on 1st day of delivery month
 • in practice
 » CME Group (prev. CBOT) builds comprehensive tables

T-Bond & T-Note Futures 5

• Computing conversion factors
 – A. Simplification #1
 • what?
 » bond maturity and times to coupon payment date
 » are rounded off to closest (i.e., earliest) 3 months
 • examples
 » bond has 20 years and 2 months to maturity
 — assume bond has 20 years to go
 » first coupon is to be paid in 4 months
 — assume coupons start in 3 months
T-Bond & T-Note Futures 6

• Computing conversion factors
 – B. Simplification #2
 • I. bond has exact # of half years after rounding off
 – > assume 1st coupon is paid in 6 months
 – > assume other coupons are paid every 6 months thereafter
 » example: bond w/ 20 years & 56 days left, 10% coupon
 \[
P = QP = \sum_{t=1}^{40} \frac{5}{(1 + 0.03)^t} + \frac{100}{(1 + 0.03)^{40}} = $146.23
\]
 conversion_factor = \frac{P}{par} = \frac{$146.23}{$100} = 1.4623

T-Bond & T-Note Futures 7

• Computing the conversion factors
 – B. Simplification #2 (continued)
 • II. bond doesn’t have exact # of half years after rounding off
 » means there must be an extra 3-month period
 – > assume 1st coupon is paid in 3 months
 – > assume other coupons are paid every 6 months thereafter
 » example: bond w/ 18 years & 96 days left, 8% coupon
 \[
 QP = \frac{1}{(1 + 0.03)^{1/2}} \left(\sum_{t=1}^{36} \frac{4}{(1 + 0.03)^t} + \frac{100}{(1 + 0.03)^{36}} \right) = $123.99
 \]
T-Bond & T-Note Futures 8

• Computing the conversion factor
 – B. Simplification #2 (continued)
 • II. (continued)
 – > still need to take accrued interest into account
 » accrued interests would be paid at bond purchase
 » so no discounting of those

\[
P = QP - \text{accrued interest} = 123.99 - \frac{4}{2} = 121.99
\]

\[
\text{conversion factor} = \frac{P}{\text{par}} = \frac{121.99}{100} = 1.2199
\]

T-Bond & T-Note Futures 9

• Cheapest-to-deliver bond
 • long party
 » must take delivery of bond chosen by short party
 » worth: bond price + accrued interest
 » pays: futures price times conversion factor + accrued interest
 • short party
 » short party can deliver any bond
 » hence, it will buy the cheapest one on the market
 » that meets the requirements of the exchange
 • thus, must be bond for which :
 » futures QP times conversion factor - bond QP is highest
T-Bond & T-Note Futures 10

• Cheapest-to-deliver bond: example
 • futures price: current quote = 93:08
 • there are 3 deliverable bonds, with QP and CF:
 » #1 QP=99:16 CF=1.0382
 » #2 QP=143:16 CF=1.5188
 » #3 QP=119:24 CF=1.2615
 • cheapest to deliver? compute the cost of delivering
 » > $ loss for short = cost of buying bond spot - proceeds from long
 » #1: 99.50 - (93.25 x 1.0382) = $2.69
 » #2: 143.50 - (93.25 x 1.5188) = $1.87 (smallest loss)
 » #3: 119.75 - (93.25 x 1.2615) = $2.12

T-Bond & T-Note Futures 12

• 2. Timing option
 • 3-day delivery sequence
 » short can initiate any bus. day in delivery month minus 2 days
 » day1 (position day)
 » short informs clearing house of intent to deliver
 » day 2 (notice of intention day)
 » clearing corp. matches oldest long to delivering short
 » short invoices long
 » day 3 (delivery day)
 » short delivers to long
 » long pays
 » title passes (long has all ownership rights & liabilities)
T-Bond & T-Note Futures 13

• 2. Timing Option *(continued)*
 • last day of trading
 » deliverable contract stops trading
 » 7th business day *before* last business day
 » of delivery month
 • settlement
 » in that period, all positions *must* be settled by delivery
 » *but* short position still chooses when to deliver
 • value
 » short party may wait for cash prices to drop
 » so the option is valuable & reflected in futures price

T-Bond & T-Note Futures 11

• 3. Wild Card option
 • differences in closing time
 » futures stop trading on CBOT at 2PM, CST
 » intent to deliver by 8PM, CST
 » T-bonds stop trading *after* 2PM CST (4PM EST)
 • option for short party
 » can exploit decreases in cash prices & cheapest bond
 » by deciding to deliver after trading on futures ends
 • consequences for option pricing
 » theory
 » practice: assume all is known and use F-S parity
T-Bond & T-Note Futures 14

• T-bond futures pricing (NOT Exam Material)
 • theory
 » options need to be priced
 » tools to do so: Options
 • if options were worthless
 » assume all is known
 » use forward-spot parity \(I = PV \text{ of future cash-flows} \)
 » \(F_0 = (B_0 - I) e^{rT} \)
 » or \(F_{i,T} = (B_0 - I) e^{r(T-t)} \)

T-Bond & T-Note Futures 15

• Quotes & Marking to Market
 • example: go long 1(one) T-bond futures at open

| time | futures price | margin requirement | cash-flow
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01-11-02</td>
<td>$103,750</td>
<td>$2,700(a)</td>
<td></td>
</tr>
<tr>
<td>(morning)</td>
<td></td>
<td></td>
<td>Periodic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- $2,700</td>
</tr>
<tr>
<td>01-11-02</td>
<td>$102,968.75</td>
<td></td>
<td>Cumulative</td>
</tr>
<tr>
<td>(close)</td>
<td></td>
<td></td>
<td>- $3,481.25</td>
</tr>
<tr>
<td>01-15-02</td>
<td>$104,750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(close)</td>
<td></td>
<td></td>
<td>+ $1,781.25</td>
</tr>
<tr>
<td>01-18-02</td>
<td>$102,750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(close)</td>
<td></td>
<td></td>
<td>- $2,000</td>
</tr>
<tr>
<td>01-22-02</td>
<td>$103,750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Then offset at</td>
<td>$103,750</td>
<td></td>
<td>- $2,700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$0</td>
</tr>
</tbody>
</table>

(a) Initial margin (Maintenance = $2,000)