Derivatives & Risk Management

• First Week:
 – Part A: Option Fundamentals
 • payoffs
 • market microstructure
• Next 2 Weeks:
 – Part B: Option Pricing
 • fundamentals: intrinsic vs. time value, put-call parity
 • introduction to the Black-Scholes pricing model
 • binomial trees & risk-neutral valuation

Part V:
Option Pricing Basics

Option Pricing Principles

• Fundamentals
 • time value vs. intrinsic value
 • key determinants of option values
 • American vs. European options – Early exercise
• Put-call parity
 • non-dividend paying stocks
 • dividend adjustment
• Option pricing
 • Black-Scholes formula
Option Pricing Principles: Notation

- X: Strike price = exercise price
- c: European call option price
- p: European put option price
- C: American call option price
- P: American put option price
- t: Current time
- T: Maturity = time when option expires
- S_t: Spot price at time t
- σ: Volatility of the underlying’s price
- D: PV of Dividends
- r: Relevant risk-free rate (continuous compounding)

Option Pricing Principles 2

- intrinsic value vs. time value
 - intrinsic value
 - calls: $\text{Max}(0, S_t - X)$
 - put: $\text{Max}(0, X - S_t)$
 - time value = option premium minus intrinsic value
 - at worst, equal to 0 (note: European vs. American)
 - strictly positive for out-of-the-money options
 - usually positive for in-the-money options

Option Pricing Principles 3

- Key determinants of option prices
 - American options vs. European options
 - at least as valuable ($C \geq c, P \geq p$)
 - equal values at maturity
 - time to maturity
 - American options: $T \uparrow \Rightarrow \ P \uparrow$ and $C \uparrow$
 - European options?
 - strike price
 - $X \uparrow \Rightarrow \ p \uparrow$ but $c \downarrow$
Option Pricing Principles 4

- Key determinants of option prices (continued)
 - price of underlying asset
 - \(S_t \uparrow \Rightarrow p & P \downarrow \) but \(c & C \uparrow \)
 - Dividends
 - \(D \uparrow \Rightarrow c & C \downarrow \) but \(p & P \uparrow \)
 - IV (European options) vs. TV effect (American options)
 - volatility of underlying asset
 - \(\sigma \uparrow \Rightarrow p & P \uparrow \) and \(c & C \uparrow \) (intuition?)
 - hard floors vs. soft floors

Option Pricing Principles 5

- H7 Table 9.1; H8 Table 10.1

<table>
<thead>
<tr>
<th>Variable</th>
<th>(c)</th>
<th>(p)</th>
<th>(C)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>(X)</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>(T-t)</td>
<td>?</td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(r)</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>(D)</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>

Option Pricing Principles 6

- Hard and Soft Floors
 - hard floor (American calls)
 - \(C_t = \text{Max}[0, S_t - X] \)
 - if not satisfied, arbitrage exists (buy call & strike now)
 - soft floor (all calls, but only on non-dividend paying stocks)
 - \(S_t \leq c_t \Rightarrow C_t = \text{Max}[0, S_t - X/(1+r)^T] \)
 - if not satisfied, arbitrage exists (buy call & risk-free bond)
 - consequence: early exercise of American calls is not optimal if the underlying asset pays no dividends
Option Pricing Principles 7

- Early exercise (American calls)
 - non-dividend paying stocks
 » never optimal to exercise early
 » intuition:
 \[C_t \geq \max[0, S_t - X / (1+r)^T] > \max[0, S_t - X] \]
 » corollary: same bound for European calls on such assets
 - dividend paying stocks?
 » early exercise may be optimal…
 » … but only if stock pays large dividend prior to maturity

Option Pricing Principles 8

- Hard and Soft Floors (continued)

Question:
Suppose an American call option is written on Nortel stock. The exercise price is $105 (\(J\)) and the present value of the exercise price is $100.

(a) What is the hard floor price of the option if Nortel stock sells for $160? Sketch a graph of the hard floor option prices against (i.e., in terms of) the Nortel stock’s price.
(b) At a stock price of $125, you notice the option selling for $18. Would this option price be an equilibrium price? Explain.

Answer:

(a) Hard floor price = \(V_t - X \)
\[= 160 - 105 = 55 \]

(b) An option price of $18 is below the hard floor price of $20. In this case, everyone would want the call option. You could then acquire a share of Nortel stock for less than the current market price. Simply buy the option (for $18), exercise it (paying $105), and you would then own a share of Nortel for a total price of $123.
Option Pricing Principles 10

• Hard and Soft Floors (American puts)
 • hard floor
 » \(\text{Max}[0, X - S_t] \)
 » if not satisfied, arbitrage exists
 • soft floor?
 » \(\text{Max}[0, X/(1+r)^T - S_t] \)
 » BKM4 Fig. 21.4

Option Pricing Principles 11

• Early exercise (American puts)
 • can be optimal to exercise early
 » intuition 1: stock price cannot fall below 0
 » intuition 2: \(T \uparrow \Rightarrow X/(1+r)^T \downarrow \)
 • impact of dividend payments
 » dividends \(\uparrow \Rightarrow \) probability of early exercise \(\downarrow \)

Options: Early Exercise (Recap)

• Calls
 • often not optimal
 » never optimal for non-dividend paying stocks
 • importance of capturing dividends
 • Puts
 • can be optimal to exercise early
 • impact of dividend payments
 » dividends \(\uparrow \Rightarrow \) probability of early exercise \(\downarrow \)
Put-Call Parity

- Put-call parity
 - European options only
 - applicability to American options?
- Intuition
- Formally
 - no-arbitrage
 - if the payoffs of 2 portfolios are equal
 - then the costs of both portfolios must be equal
 - “reverse engineer” the prices
 - examples

Put-Call Parity 2

- Intuition

(a: covered call)

(b)

(c: protect. put)

(d)

Put-Call Parity 3

- Put-call parity

\[
\begin{array}{ccc}
\text{Cash} & \leq X & \geq X \\
\text{Selling} & S_T - X & 0 \\
\text{Buying} & 0 & X - S_T \\
\text{Selling} & -X & 0 \\
\text{Buying} & S_T & S_T \\
\text{Total} & S_T - X & 0 \\
\end{array}
\]

\[c = p + X/(1+r)^T - S_T \quad \text{and thus} \quad c = p + S_T - X/(1+r)^T\]
Put-Call Parity 4

Question:
European put and a European call on the same stock
exercise price $X = \$75$
same expiration dates
The current price of the stock is $68.
The put’s current price is $6.50 higher than the call’s price
A riskless investment over the time until expiration yields 3 percent.
Given this information, is there any riskless profit opportunities available?

Put-Call Parity 5

Answer:
According to the parity equation:

$$V_P - V_C = \frac{X}{(1 + r_f)^t} - V_S \Rightarrow V_P - V_C = \frac{\$75}{(1 + 0.03)^t} - 68 = \$4.82.$$

Thus, with the put being priced $6.50 higher than the call, the two options are out of parity. A riskless arbitrage opportunity would exist:

Put-Call Parity 6

Answer:
A riskless arbitrage opportunity exists:

- Sell the stock short...................... $68.00
- Sell the put option......................
- Buy the call option..................... $6.50
- Proceeds: $74.50

Invest the proceeds at the riskless rate of 3%. At maturity, you will have the value at expiration of $76.74 = \$74.50 \times 1.03$.

Also, you can acquire a share of stock (to cover the short sale) for $75, no matter what happens to the stock price.

You are assured $1.74 without putting any of your own money at risk.
Put-Call Parity 7

• Put-call parity (continued)
 • continuous-time version
 » \(c = p + S_t - X e^{-(T-t)} \)
 » \(c - p = S_t - X e^{-(T-t)} \)
 • dividends
 » adjustment needed
 » \(c = p + PV(S_T) - PV(\text{dividend}) - X/(1+r)^T \)

Put-Call Parity 8

• Extensions (NOT Exam Material)
 • American options; \(D = 0 \)
 \[S - X < C - P < S - X e^{-(T-t)} \] (H8 eq. 10.4)
 • European options; \(D > 0 \)
 \[c - p = S - D - X e^{-(T-t)} \] (H8 eq. 10.7)
 • American options; \(D > 0 \)
 \[S - D - X < C - P < S - X e^{-(T-t)} \] (H7, 9.8 p. 215) (H8 eq. 10.11)

Option Pricing Methods

• Analytical
 • Black-Scholes
 » pluses (quick) & minuses (European calls, assumptions)
 • Numerical
 • Binomial Trees
 • Monte Carlo Methods
 • Finite difference Methods
 • Analytical Approximation
Option Pricing – Key Problem

• Uncertainty
 • we don’t know future stock prices

• Solution
 • Assume a distribution for periodic returns
 • Assume a stochastic process for stock prices

Option Pricing in Practice

• Black-Scholes
 • gives price of European call
 \[c = e^{-rT} [S N(d_1)e^{r(T-t)} - X N(d_2)] \]
 where
 \[d_1 = \frac{\ln(S/X) + (r + \sigma^2/2)(T-t)}{\sigma \sqrt{T-t}} \]
 \[d_2 = \frac{\ln(S/X) + (r - \sigma^2/2)(T-t)}{\sigma \sqrt{T-t}} \]
 • interpretation?

Option Pricing in Practice 2

\[c = e^{-r(T-t)} [S N(d_1)e^{r(T-t)} - X N(d_2)] \]

• \(N(z) \) = Prob(\(Z<z\))
 \(Z \) is standard normal
• \(N(d_2) \)
 \(= \) probability of exercise.
• \(XN(d_2) \)
 \(= \) expected pay-out at exercise
• \(SN(d_1 \exp(r(T-t))) \)
 \(= \) expected value of the stock price, if exercised.
Option Pricing in Practice 3

- Black-Scholes (continued)
 - gives price of European call
 - price of European put?
 - use put-call parity
 - intuition:

- American options?
 - optimality of early exercise

Option Pricing in Practice 4

- Binomial option pricing
 - problem
 - assumptions needed for B&S are not always realistic
 - example: interest rates are deterministic?!
 - solutions:
 - 1. numerical approximations
 - grid, risk-neutral probabilities
 - as accurate as needed/desired
 - 2. PBS = Practitioners’ B&S (e.g., Berkowitz)

Numerical Pricing Methods

- Risk-Neutral valuation
- Methods
 - Binomial Trees
 - Early Exercise Possible
 - Monte Carlo Methods
 - Several Underlying Variables Possible
 - Finite difference Methods
 - Early Exercise Possible
 - Analytical Approximation
 - American Options
Risk-Neutral Valuation

• Approach
 • introduce binomial trees now
 • to start thinking about
 – risk-neutral valuation of derivatives
 – and dynamic hedging strategies

• Applicability
 • use risk-neutral valuation throughout the course
 • return to binomial trees in Parts III & IV

Example

• Call Option example (H7 Fig. 11.1; H8 12.1):
 • 3-month call option with strike price X = 21

 \[
 \begin{align*}
 \text{Stock Price} &= $22 \\
 \text{Call Price} &= $1 \\
 \text{Stock Price} &= $18 \\
 \text{Call Price} &= $0
 \end{align*}
 \]

 • price of the call today?
 – use risk-neutral valuation

Example 2

• Riskless Portfolio
 • Portfolio
 \[
 \begin{align*}
 \text{LONG} & \quad \Delta \text{shares} \\
 \text{SHORT} & \quad 1 \text{ call option}
 \end{align*}
 \]

 \[
 \begin{align*}
 S &= $20 \\
 \Delta S &= S$22 - $1 = $21 \\
 $18 = S$$18 - $0
 \end{align*}
 \]

 • Portfolio is riskless
 \[
 \begin{align*}
 \text{if} & \quad S22 - $1 = S18 \\
 \text{i.e.} & \quad \Delta = 0.25 \\
 \text{if} & \quad \text{LONG 0.25 shares and SHORT 1 call option}
 \end{align*}
 \]
Example 3

• Value of the riskless portfolio
 – in 3 months
 • if the stock price moves up:
 \[\times 22 \times 0.25 - 1 = 4.50 \]
 • if the stock price moves down:
 \[\times 18 \times 0.25 - 0 = 4.50 \]
 – today
 • PV of \$4.50 at the risk-free rate (why?)
 • if annual continuously-compounded risk-free rate is 12%, portfolio is worth: \[\text{\$4.50 e}^{-0.12 \times 0.25} = 4.367 \]

Example 4

• Value of the Option Today
 • entire portfolio
 » worth \$4.367
 • shares
 » worth \(\Delta \times S = 0.25 \times \$20 = \$5 \)
 • Value of the option
 » is therefore: \(\$5 - 4.367 = 0.633 \)

Binomial Option Pricing Fundamentals

• Why?
 • approximate the movements in an asset’s price
 • to simplify the pricing of derivatives on the asset

• What?
 • “discretize” underlying asset’s price movements
 • and value options as if in a risk-neutral world

• How?
 • asset price at the BEGINNING of any period can lead to
 • only 2 stock prices at the END of that period
Binomial Trees

- Asset Price Movements
 - divide the time from t to T into small intervals Δt
 - in each time interval, assume the asset’s price S can move $UP \uparrow$
 - by a proportional amount u
 - or
 - move $DOWN \downarrow$
 - by a proportional amount d

Binomial Trees 2

- Movements in time interval Δt
 - (H7 Fig.19.1; H8 12.2)
 \[S \xrightarrow{p} Su, \quad S \xrightarrow{(1-p)} Sd \]

Tree Parameters

- What?
 - p, u and d
- Parameter values?
 - tree must give correct values
 - for the mean & standard deviation
 - of the stock price changes
 - in a risk-neutral world
- Simplification
 - tree is recombining: $u = 1/d$
Tree Parameters 2

- Complete Tree (Fig. 19.2)

Risk-Neutral Valuation

- Assumption
 - no arbitrage opportunity exists

- Basic idea
 - assume a binomial tree for asset price movements
 - create a riskless portfolio
 - stock plus option
 - riskless portfolio always possible with binomial tree
 - value the portfolio
 - if riskless, then risk-neutral valuation is OK

- Reference

Risk-Neutral Valuation 2

- European Put example \((u=1.1; \ d=1/u)\):
 - 3-month put with strike price \(X = 21\)
 - Stock Price = $22
 - Put Price = $0
 - Stock Price = $20
 - Put Price = ?
 - Stock Price = $18.18
 - Put Price = $2.82
 - price of the put?
 - use risk-neutral valuation
Risk-Neutral Valuation 3
• Riskless Portfolio
 • Portfolio
 - LONG Δ shares
 - LONG 1 put option
 $S = \Delta = 22$
 \[\Delta \times 0.738 + 0 = 16.24 \]
 \[18.18 \times 0.738 + 2.82 = 13.42 + 2.82 = 16.24 \]
 \[\text{Portfolio is riskless} \]
 - if \(22\Delta = 18.18\Delta + 2.82 \) \(\Rightarrow \Delta = 0.738 \)
 - LONG 0.738 shares and LONG 1 put option

Risk-Neutral Valuation 4
• Value of the entire (riskless) portfolio
 - in 3 months
 • if the stock price moves up:
 \[22 \times 0.738 + 0 = 16.24 \]
 • if the stock price moves down:
 \[18.18 \times 0.738 + 2.82 = 13.42 + 2.82 = 16.24 \]
 - today
 • PV of 16.24 at the risk-free rate (why?)
 • if annual continuously-compounded risk-free rate is 12%, portfolio is worth: $16.24 e^{-0.12 \times 0.25} = 15.76$

Risk-Neutral Valuation 5
• Value of the Option Today
 • Entire portfolio
 \[\text{is worth } 15.76 \]
 • Shares
 \[\text{are worth } 0.738 \times 20 = 14.76 \]
 • Value of the put option
 \[\text{is therefore } 15.76 - 14.76 = 1.00 \]
Risk-Neutral Valuation 6

- Generalization (*H7 Fig. 11.2; H8 Fig. 12.2*)
 - derivative
 - value \(f \)
 - expires at time \(T \)
 - dependent on a stock

Risk-Neutral Valuation 7

- Riskless portfolio
 - LONG \(\Delta \) shares and SHORT 1 derivative

Risk-Neutral Valuation 8

- Value of the portfolio at time \(T \):
 - \(\text{up state: } S_u \Delta - f_u = S_d \Delta - f_d \) (down state)
- Value of the portfolio today:
 - \((S_u \Delta - f_u)e^{-rT} \)
 - and also
 - \(S \Delta - f \)
- Hence
 - \(f = S \Delta - (S_u \Delta - f_u)e^{-rT} \)
Risk-Neutral Valuation 9

- Thus:
 \[f = S \Delta - (Su - f_u) e^{-rT} \]

- Substituting for \(\Delta \), we obtain
 \[f = \left[pf_u + (1-p)f_d \right] e^{-rT} \]
 where \(p = \frac{e^{rT} - d}{u - d} \)

Risk-Neutral Valuation 10

- Interpretation
 - \(f = \left[pf_u + (1-p)f_d \right] e^{-rT} \)
 - \(p \) and \((1-p)\) can be interpreted as the risk-neutral probabilities of up & down movements

- Value of a derivative
 - \(f \): its expected payoff
 - in a risk-neutral world
 - discounted
 - at the risk-free rate

Irrelevance of Stock’s Expected Return

- When valuing an option in terms of the underlying stock,
 - the expected return on the stock is irrelevant
Original Example Revisited

• Call, H8 Fig. 12.1 (\(S = 20; X = 21; \Delta t = T = 3\) months)

\[
\begin{align*}
S_u &= 22 \\
S_d &= 18 \\
\Delta t &= T = 3 \text{ months}
\end{align*}
\]

* risk-neutral probabilities:

\[
p = \frac{e^{\Delta t} - d}{u - d} = \frac{e^{0.12\times0.25} - 0.9}{1.1 - 0.9} = 0.6523
\]

Original Example Revisited 2

• H8 Fig. 12.1

\[
\begin{align*}
S_u &= 22 \\
S_d &= 18 \\
f_u &= 1 \\
f_d &= 0
\end{align*}
\]

* Value of the option

\[
c = e^{-0.12\times0.25} \left(0.6523 \times $1 + 0.3477 \times $0 \right) = $0.633
\]

Original Example Revisited 3

• Key Result
 – risk-neutral valuation ("revisited")
 – coincides with the ("original") no-arbitrage valuation.

• Generalization
 • in general
 • when pricing derivatives
 • using risk-neutral valuation
 • is ok
Original Example Revisited 4

• Valuing the Stock
 • in a risk-neutral world
 – stock must also earn the risk-free rate
 • consequence
 – Since p is a risk-neutral probability
 – $20 \cdot e^{0.12 \cdot 0.25} = 22 \cdot p + 18 \cdot (1 - p)$
 – $p = 0.6523$

A Two-Step Call Option Example

• H8 Fig. 12.3 (X=21; u=1.1; d=0.9; T=6 months)

Each "time step" is $\Delta t=3$ months

A Two-Step Call Option Example 2

• Call value (Fig. 12.4; X=21)

• Value at node B = $e^{-0.12 \cdot 6 \cdot 0.5} (0.6523 \cdot 3.2 + 0.3477 \cdot 0) = 2.0257$
• Value at node A = $e^{-0.12 \cdot 6 \cdot 0.5} (2.0257 + 0.3477 \cdot 0) = 1.2823$
• No difference between American & European calls
A Two-Step Put Option Example

- **Fig. 12.7** (X=52; u=1.2, d=0.8, T=2 years)

Each "time step" is Δt=1 year; annual risk-free rate = r = 5%

\[
p = \frac{e^{rt} - d}{u - d} = \frac{e^{0.05} - 0.8}{1.2 - 0.8} = 0.6282
\]

A Two-Step Put Option Example 2

- **European put value**
 (Fig. 12.7; X=52)

- Value at node \(B \) = \(e^{-0.05} (0.6282 \times 50 + 0.3718 \times 4) = 1.4147 \)
- Value at node \(C \) = \(e^{-0.05} (0.6282 \times 4 + 0.3718 \times 20) = 9.4636 \)
- Value at node \(A \) = \(e^{-0.05} (0.6282 \times 1.4147 + 0.3718 \times 9.4636) = 4.1923 \)

A Two-Step Put Option Example 3

- **American put value**
 (Fig. 12.8; X=52)

- Value at node \(B \) = \(\max[X - S_B, 1.4147] = 1.4147 \)
- Value at node \(C \) = \(\max[X - S_C, 9.4636] = \max[12, 9.4636] = 12 \)
- Value at node \(A \) = \(\max[2, e^{0.05} (0.6282 \times 1.4147 + 0.3718 \times 12)] = 5.0894 \)
Delta

- Definition
 - Delta (Δ) is the ratio
 - of the change in the price of a stock option
 - to the change in the price of the underlying stock

- Dynamic hedging
 - The value of Δ varies from node to node
 - Dynamic hedging needed!

Delta 2
- Riskless portfolio at a given node:
 - LONG Δ shares and SHORT 1 derivative
 - $\Delta S - f_u$
 - $\Delta S - f_d$
 - riskless
 - if $Su \Delta - f_u = Sd \Delta - f_d$

Delta 3
- European put ($S=50; X=52$)
 - Value of Δ at node B
 - $=(0-4)/(72-48) = -1/6$ (i.e., short 1 put and short 1/6 share)
 - Value at node C
 - $=-(4-20)/(48-32) = -1$ (i.e., short 1 put and short 1 share)
 - Value at node A
 - $=-(1.41-9.46)/(60-40) = -0.4025$ (short 1 put and short 0.4025 share)