Derivatives & Risk Management

• Previous lecture set:
 – Forward outright positions & payoffs + NDFs
 – Forward price vs. current & future spot prices

• This lecture set – Part II (Futures)
 – Futures vs. forward
 • trade in the risk, standardization, right of offset
 – Stock Index Futures

Part II: Futures

Futures vs. Forwards

• Fundamentals
 – participants, major contracts, exchanges

• Differences w/ forward contracts (main ones)
 – “trading in the risk” vs. “trading in the commodity”
 » right of offset
 – standardized, exchange-traded (not OTC)
 » trading vs. clearing; Dodd-Frank / EMIR changes
 – marking-to-market / risk control

• Differences b/ forward & futures prices
 – Theory vs. practice and arbitrage
Futures vs. Forwards

- **Definition**
 - Basic principle: similar to forwards
 - In practice: delivery rare *(most investors offset early)*

- **Right of offset**
 - What? Right to get out early at a *market* price
 - vs. Forward: can get out early *only* if counterparty agrees
 - Why?
 - encourages speculation (which reduces hedging costs)
 - hedges can use gain/loss on futures to alleviate loss/gain on the underlying (idea similar to NDF; settlement differences)
 - How? Standardization + Risk control

Futures vs. Forwards 2a

- **Differences w/ forward contracts** (main ones)
 - 1. *exchange-traded*
 - U.S.A.: CME-CBOT-NYMEX-KCBT; ICE-NYBOT-NYSE; ...
 - Abroad: EUREX-ISE, NSE, Bovespa, Dalian, Shanghai, Kospi, etc.
 - How?
 - Historically: participants in the "pits"
 - brokers (cust.) vs. traders (own) vs. broker-traders
 - commission brokers (cust.) vs. locals (own)
 - Now: overwhelmingly (CME) or solely (ICE) electronic trading

Futures vs. Forwards 3

- **Differences w/ forward contracts** (main ones)
 - 2. Regulation
 - United States
 - government: CFTC (plus SEC, Fed, Treasury)
 - self-regulation: futures industry (NFA), exchanges
 - Canada: markets vs. trading *(NOT Exam Material)*
 - provincial securities commissions vs. self
 - exception: WCE *(federal regulation; now part of ICE)*
 - 3. Corollaries of exchange-based trading
 - standardized contracts; right of offset
 - trading risk vs. commodity?
 - risk control mechanism
Futures vs. Forwards 4

- 3A. Contract standardization
 - contract size
 - expiry cycle
 - currencies (CME) and indices: M-J-S-D (peso, rand?)
 - corn (CBOT): M-M-Jul-S-D
 - delivery dates
 - currencies: 3rd Wednesday of the month (delivery)
 - others: mostly 3rd Friday of the month
 - exceptions exist (ex.: KC Value Line: EOM; bond futures)
 - other contract specifics
 - commodity grade, delivery arrangements (or cash settlement)
 - price limits (corn: 30 cents/b., none in spot mo.) & position limits
 - price quotes

Futures vs. Forwards 5

- 3A. Contract standardization (continued)
 - reading futures quotes
 - terminology
 - open interest
 - ticks (cent for oil at NYMEX, 32nd of $ for bonds at CBOT, etc)
 - spot month (when the contract expires)
 - “nearby” vs. (first-, second-,...) deferred contracts
 - reversing (= offsetting) a trade
 - newspaper info
 - Hull Table 2.2, BKM
 - in class: using FT Market Data

Futures vs. Forwards 6

- 3B. Right of offset
 - OTC market: Commitment
 - Parties in theory cannot get out of a forward agreement
 - Really? Non-Deliverable Forwards (NDF), G10 currencies
 - Futures markets: Offset is possible
 - What? How to get out early at a market price
 - How? Offset long position by going short, & vice-versa
 - 3A+3B: Trading “risk” vs. “commodity”
 - Forwards: trade in the commodity (delivery intent)
 - Futures: trade in the risk (exposure to price movements)
Futures vs. Forwards 7

- 3C. Risk control
 - OTC market
 - “my word is my bond”
 - theory vs. practice (credit lines; changes since 2008)
 - Big regulatory changes after 2010 (Dodd-Frank, EMIR)
 - futures market
 - clearing house & position limits
 - margin requirements
 - opportunity cost; cash vs. T-bills
 - marking to market

Risk Control through Clearing House

- What?
 - Futures
 - exchange-run (exception: CME-CBOT used to share)
 - Options: Options Clearing Corporation (OCC)
 - owned jointly by all U.S. options exchanges
 - 12 options (including BATS) + 4 small futures exchanges
 - http://www.optionsclearing.com/clearing/clearing-services/exchanges.jsp

- Why?
 - market liquidity vs. knowing counterparts
 - margin posts and margin calls vs. “word is bond”

Risk Control through Clearing Houses 2

- How?
 - effective “buyer” and “seller” of all futures
 - counter-party to all trades
 - guarantees execution
 - “open interest”
 - in practice
 - reversing trades (offsetting)
 - how do deliveries get carried out?
 - risk for the clearing house
 - default
Margins

- Basic Idea -> security deposit
- Risk control
 - margins and margin calls
 » for both long and short parties
- Margin determinants
 - volatility of underlying asset
 » Determines extent of potential loss or gain
 - naked position vs. covered position (hedge, arbitrage, or spread)

Futures Marking-to-Market

- What?
 - daily settlement of gains and losses
 - plus “resetting” of all positions
- Why?
 - risk control
 - hedgers vs. speculators
- How?
 - numerical example
- Consequence (NOT exam material)
 - difference between futures price and forward price

Futures Marking-to-Market 2

- Forward price
 - delivery price
 » price at which the underlying asset will be delivered
 » agreed upon at time forward is entered into
 - forward/futures price
 » delivery price that would make the contract have 0 value
 » changes during life of contract (but, who cares...?)
 » Forwards: who cares? Futures: it really matters!
 - forward price = delivery price
 » when contract is created

Forward price = delivery price

Forward/futures price = delivery price

Forwards: who cares? Futures: it really matters!
Futures Marking-to-Market 3

- Futures price
 - delivery price
 - price at which the underlying asset will be "delivered"
 - agreed upon at time futures is bought
 - futures price
 - delivery price that would make the contract have 0 value
 - changes during life of contract (and, it matters)
 - futures price = delivery price
 - when contract is bought

Futures Marking-to-Market 4

- Futures price (cont’d)
 - marking to market
 - replacement of the futures contract at the end of trading
 - every day (at least)
 - by a new contract with new delivery price
 » delivery date unchanged
 » new delivery price = futures price at close

Futures Marking-to-Market 5

<table>
<thead>
<tr>
<th>Date</th>
<th>Futures price ($)</th>
<th>Margin requirement</th>
<th>Cash flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-15-05</td>
<td>0.755 $/SF</td>
<td>$2,150 (b)</td>
<td>- $2,150 (c)</td>
</tr>
<tr>
<td>(close)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09-16-05</td>
<td>0.702 $/SF</td>
<td>(d)</td>
<td>- $375 (d)</td>
</tr>
<tr>
<td>(close)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09-19-05</td>
<td>0.74 $/SF</td>
<td>(f)</td>
<td>- $1,380 (g)</td>
</tr>
<tr>
<td>(close)</td>
<td></td>
<td></td>
<td>+ $2,150 (h)</td>
</tr>
<tr>
<td>09-21-05</td>
<td>-SF 125,000 (i)</td>
<td></td>
<td>- $10,000 (i)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+SF 125,000 (i)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+ $93,750 (i)</td>
</tr>
</tbody>
</table>
Futures Marking-to-Market 6

- Differences b/ forward & futures prices
 - in theory
 - interest rates known
 - stochastic interest rates
 - interest rate vs. futures price (or price of underlying asset)
 » positive correlation: futures price > forward price
 » negative correlation: futures price < forward price
 - in practice / arbitrage

Index Futures

- Stock-market indices
 - basic idea
 - various types
- Stock Index Futures
 - basic idea
 - US vs. other countries
 - index futures as investment tools
 » domestic example (alternative to cash purchases)
 » indirect international diversification tool

Stock Market Indices

- Idea
 - measure of overall performance
- Examples
 - arithmetic: price-weighted (DJI)
 - stock choice
 - arithmetic: market-value weighted (S&P 500)
 - market value of equity, broader, NYSE+/NASDAQ
 - geometric: Value-Line
 - downward bias (relative to return on eq.-weighted portf.)
Market Indices: DJIA (NOT Exam Material)

- Computation
 - price-weighted
 - splits, stock dividends > 10% (BKM4 Tables 2.3 & 2.4)

- Divisor example

<table>
<thead>
<tr>
<th>Time</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJI (no split) [\frac{25 \times 100}{2}]</td>
<td>[\frac{30 + 90}{2}]</td>
</tr>
<tr>
<td>DJI (split, d=2) [\frac{25 \times 100}{2}]</td>
<td>[\frac{30 + 45}{2}]</td>
</tr>
<tr>
<td>DJI (split, d=75/62.5) [\frac{25 \times 50}{1.2}]</td>
<td>[\frac{30 + 45}{1.2}]</td>
</tr>
</tbody>
</table>

Market Indices: S&P 500 (NOT Exam Material)

- Computation
 - value-weighted
 - No need to adjust for splits or stock dividends

- Example

<table>
<thead>
<tr>
<th>Time</th>
<th>Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJI (no split) [\frac{25 \times 100}{2}]</td>
<td>[\frac{30 + 90}{2}]</td>
</tr>
<tr>
<td>S&P (no split) [\frac{500 \times 100}{2}]</td>
<td>[\frac{600 + 90}{2}]</td>
</tr>
<tr>
<td>S&P (split) [\frac{500 \times 100}{2}]</td>
<td>[\frac{600 + 90}{2}]</td>
</tr>
</tbody>
</table>

Interpreting Stock Market Indices

- DJI
 - price-weighted
 - gives return on portfolio with 1 share of each stock

- S&P 500
 - market-value-weighted
 - gives return on “market” portfolio (use for index funds)

- Value-Line
 - Not representative of the return on any portfolio
Other Relevant Market Indices

- Equally-weighted indices
 - same dollar weight on each stock
 - need to rebalance
- Foreign indices (http://finance.yahoo.com/intlindices)
 - FTSE ("Footsie")
 - Value-weighted
 - Nikkei
 - 225: price-weighted; 300: value-weighted
 - DAX, CAC-40, TSE-300 Composite, etc.

Stock Index Futures

- Idea
 - cash-settled futures contract (Sub $ times index value)
 - reduces transactions costs
- Types
 - US: DJIA 30, S&P 500, Kansas City Value Line, NYSE, ...
- Why Popular
 - allows construction of cheap synthetic stock positions
 - usefulness for international portfolio diversification
 - allows hedging and arbitrage

Stock Index Futures 2

- Some specific items (microstructure)
 - Cash or actual delivery?
 - example: S&P 500 on the CME
 - short position: gives $250 x S_T (value of index at maturity)
 - long position: gives $250 x F_T (delivery price)
 - if F_T ≥ S_T, then short owes $250(S_T - F_T) to long
 - "mini" index: CME’s mini
 - S&P500 mini ($50 vs $250; 1pt = $50 vs. $2.50 per contract)
 - Nasdaq-100 ($20 vs $100; 1pt = $20 vs. $1 per contract)
 - foreign index futures traded in the United States
 - settlement is only in U.S. dollar
 - 2 sources of risk: FX & basis ("quanto")
 - usefulness in practice: Jorion & al. (JPM 1993)
Stock Index Futures 3

• Synthetic stock positions
 • Idea
 - apply future-spot parity
 - investor can
 » buy shares of all stocks in the index (practical? ETFs)
 » or
 » go long index futures and buy T-bills to cover settlement

• If you wish to speculate & are
 » bullish: hold long futures position, buy T-bills
 » bearish: opposite

Stock Index Futures 4

• Synthetic stock positions
 • example
 » TSE-35 is 300 for spot and 303 for 3-month
 » multiplier is $100
 » 3-month interest rate = 1% (annualized = 4%)
 » investor wants to invest $30m in Canadian mkt for 3 months
 → Go long TSE futures & buy $30 mil. worth of T-bills
 or
 → Buy $30 mil. in stocks making up the TSE-35

Stock Index Futures 5

• Synthetic stock positions (continued)
 • example: returns from both approaches?
 → Go long futures & buy $30 mil. worth of T-bills
 » $30m in T-bills at 1% will be worth $30.3m in 3 months
 contract price = 303, multiplier = $100
 » so, go long $30,300,000/(303x$100) = 1,000 contracts
 » in 3 months, you pocket: ($s_T - 303) x $100,000 (why $s_T?)
 plus you get your return on T-bills: $30,300,000
 » Portfolio worth at T: ($s_T - 303) x $100,000 + $30,300,000
Stock Index Futures 6

- Synthetic stock positions (continued)
 - example: returns from both approaches?
 - Buy $30 mil in stocks making up the TSE-35
 - $30m in TSE-35
 - contract price = 300, multiplier = $100
 - so, buy spot $30,000,000 (100x$300) = 1,000 "contracts"
 (in practice? TSE makes spot contracts available)
 - in 3 months, you have a portfolio worth:
 $ T \times 100,000

Stock Index Futures 7

- Synthetic stock positions
 - example (continued) – what if multiplier were $500?
 - TSE 35 is 300 for spot and 303 for 3-month hence
 - 3-month interest rate = 1%
 - investor wants to invest $30m in Canadian mkt for 3 months
 - go long 200 contracts: 200 x 500$ (multiplier) * 300
 - buy T-bills to cover payment of futures price
 - 200 x 500 x 303 / (1+1%) = $30m
 - at maturity: net worth = 200 x 500 x S_T
 - 200 x 500 x (S_T - F_0) = 100,000 S_T - $30.3m
 - $30m(1.01) = $30.3m

Stock Index Futures 8

- Synthetic stock positions
 - example (continued) – did we forget anything?
 - Dividends…
 - F = S(1 + r - d) (Assume delivery in 1 yr.)
 - if S = 1,000, r = 4%, d = 2%
 - Equilibrium F = 1000 x (1 + 0.04 - 0.02) = 1020
Stock Index Futures 9

- Index futures in practice: Investing Abroad
 - idea: minimize transactions costs
 - risks:
 » basis risk
 » FX risk? (quantos)
 » arbitrage?
 - example

Stock Index Futures: “Arb”

- Index futures in practice: Index arbitrage
 - idea: exploit deviations from parity
 - Triple (now “quadruple”) witching hour
 - 4 Fridays per year
 » index futures + index option + some ind’l stock options
 » all expire at same time
 » exception (S&P 500)
 - volatility
 » supposedly increases (program trading)
 » fundamentals vs. market depth
 » price levels vs. arbitraging price differences

Stock Index Futures: “Arb” 2

- Index futures in practice: Index arbitrage
 - \[F = S (1 + r - d) \]
 - You are a money market fund manager & observe
 - 3 months before S&P 500 futures settlement: \(F=1030 \)
 » \(S = 1000, \ r = 4\%, \ d = 2\% \), but \(F = 1030 \)
 » a spot 3-month T-bill earns 4% per annum or 1% per qtr.
 » a synthetic T-bill earns __?
 - When to enter & what effect on markets
 » convergence will mean that you will earn… by…
 » exiting (“sell on close” or exit early?)
Stock Index Futures: Hedging

• Some specific items
 – Basis risk
 – basis = futures price - spot price
 – convergence property
 » do futures price = spot price at maturity?
 » “Yes” for own hedges
 Caveat: compare apples to apples (embedded options?)
 » “Maybe” for cross hedges

Stock Index Futures: Hedging 2

• Hedging stock portfolios
 • ratios to hedge
 – Q1. When would a 1:1 ratio work?
 – Q2. Should you hedge unsystematic risk (individual stock, industry fund) with Stock Index Futures?
 – Hedge Ratios ➔ Use betas or regression
 » Betas: HR = (Portfolio B)/(Stock Index B)
 » Regression: S = a + HR x F + e