Derivatives & Risk Management

• Previous lecture set:
 – Futures vs. forwards
 – Stock Index Futures

• This lecture set – Part III
 – Interest-Rate Derivatives
 • FRAs
 • T-bills futures & Euro$ Futures

Part III:
Interest Rate Derivatives

Derivatives “of Interest”

• Interest-Rate Derivatives
 • Contracts on short-term interest rates
 » FRAs, Eurodollar futures (also, T-bills futures)
 » (Single-currency) Interest-rate (IR) Swaps
 • Futures on long-term interest rates
 » e.g., T-bonds & T-notes futures, Bund futures

• Currency derivatives
 • Forwards and futures on FX; FX swaps
 • Currency swaps (= cross-currency interest-rate swaps)

• Relative importance: ISDA + BIS figures
Forward Interest Rates & FRA’s

- Background
 - bond pricing
 - term structure of interest rates & pure yield curve
 - forward interest rate (aka implied forward short rate)

- Forward rate agreements
 - market microstructure
 - locking in rates with FRA’s

Bond Pricing

- Equation for a coupon bond:
 - \(P = \text{PV(annuity)} + \text{PV(final payment)} \)
 - \(P = \frac{\text{coupon}}{\text{ytm}} \cdot \frac{\text{Par}}{\sum (1 + \text{ytm})} \)
 - Terminology: \(T = \text{maturity}; ytm = \text{yield to maturity} \)

- Example: \(C_t = 40 \); Par = $1,000; disc. rate = 4%; \(T = 60 \)
 \[
 P = \sum_{t=1}^{60} \frac{40}{(1+0.04)^t} + \frac{1,000}{(1+0.04)^{60}} = 904.94 + 95.06 = 1,000
 \]

Bond Pricing 2

- Equation for a zero-coupon bond:
 - \(P = \text{PV (final payment)} \)
 - \(P = \frac{\text{Par}}{(1+y)^T} \)
 - Terminology: \(y = \text{T-year spot rate} \)

- Example: \(C_t = 0 \); Par = $1,000; disc. rate = 4%; \(T = 60 \)
 \[
 P = \frac{1,000}{(1+0.04)^{60}} = 95.06
 \]
Bond Pricing 3

- Why focus on zeroes?
 - The \textit{ytm} of coupon bonds is an average of the spot rates of each of the cash flows (idea: reinvestment)

\[
P = \sum_{i=}^{\infty} \frac{\text{Coupon}_i}{(1+y_{tm})^i}, \quad Par = \sum_{i=}^{\infty} \frac{\text{Coupon}_i}{(1+y_{i})^i}
\]

- The \textit{ytm} of zeroes (i.e., the spot rate) is not corrupted by these reinvestment issues

Term Structure of Interest Rates

- Basic question
 - link between spot rates (= \textit{ytm} on zeroes) & maturity

- Bootstrapping short rates from strips
 - forward rates and expected future short rates

- Interpreting the term structure
 - does the term structure contain information?
 - certainty vs. uncertainty

- Recovering short rates from coupon bonds

“Term”inology

- Term structure = yield curve
 - = plot of the YTM as a function of bond maturity
 - Pure yield curve (special case)
 - = plot of the spot rate by time-to-maturity

- Short rate vs. spot rate
 - both are “zero rates”
 - 1-period rate vs. multi-period yield (BKM4 Fig. 14.3)
 - spot rate = current rate appropriate to discount a cash-flow of a given maturity
Extracting Info re: Short Interest Rates

- From zeroes
 - non-linear regression analysis
 - bootstrapping
- From coupon bonds (NOT Exam Material)
 - system of equations
 - regression analysis (no measurement errors)
- Certainty vs. uncertainty
 - forward rate vs. expected future (spot) short rate

(Implied) Forward Interest Rates

- Definition #1
 - forward interest rate
 - for a given period in the future
 - = interest rate
 - implied by current spot rates
- Definition #2
 - “break-even rate”
 - that equates
 - the payoffs of roll-over and LT strategies

Bootstrapping Fwd Rates from Zeroes

- Forward rate
 - “break-even rate”
 - equating the payoffs of ST roll-over vs. LT strategies
 - n years @ y_n vs. (n-1) years @ y_{n-1} plus one year at f_n
 \[n\times y_n = (n-1)\times y_{n-1} + 1\times f_n \]
- Intuitive formula
 - \(f_1 = y_1 \) and \(f_n = n\times y_n - (n-1)\times y_{n-1} \)
Bootstrapping Fwd Rates from Zeroes 2

- Forward rate
 - “break-even rate”
 - equating the payoffs of ST roll-over vs. LT strategies
 - \(n \) years @ \(y_n \) vs. \((n-1)\) years @ \(y_{n-1} \) plus one year at \(f_n \)
 \[(1 + y_n)^n = (1 + y_{n-1})^{n-1}(1 + f_n) \]

- Precise formula
 \[f_1 = y_1 \quad \text{and} \quad f_n = \frac{(1 + YTM_{n-1})^n}{(1 + YTM_n)^{n-1}} - 1 \]

Bootstrapping Fwd Rates from Zeroes 3

- Example 1:
 - BKM4 Table 14.2 & Fig.14.1; BKM9 T15.1 & Fig.15.3
 - 4 bonds, all zeroes (reimbursable at par of $1,000)
T (maturity)	Price	YTM (spot rate)
1	$925.93	8%
2	$841.75	8.995%
3	$758.33	9.66%
4	$683.18	9.993%

Bootstrapping Fwd Rates from Zeroes 4

- Forward interest rate for year 1
 \[\frac{\$925.93}{1 + (1 + f_1)} = \frac{\$1,000}{1 + y_1} \Rightarrow f_1 = y_1 = 8\% \]

- Forward interest rate for year 2
 \[\frac{\$841.75}{1 + (1 + f_2)(1 + f_3)} = \frac{\$1,000}{1 + 8\%(1 + f_3)} \Rightarrow f_2 = 10\% \]
 \[\frac{\$841.75}{1 + f_2} = \frac{\$925.93}{1 + f_3} \Rightarrow f_3 = 10\% \]
Bootstrapping Fwd Rates from Zeroes 5

- Forward rates for years 3 and 4
 - keep applying the method
 - you find \(f_3 = 11\% = f_4 \)

- General Formula
 \[
 f_i = \frac{(1+YTM_i)^n}{(1+YTM_{i-1})^n-1}
 \]

Bootstrapping Fwd Rates from Zeroes 6

Example 2: Intuitive ("quick & dirty") forward rates

<table>
<thead>
<tr>
<th>Zero-Coupon Rates</th>
<th>Bond Maturity</th>
<th>(1yr) Fwd Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1 = 12.00%)</td>
<td>1</td>
<td>(f_1 = y_1 = 12%)</td>
</tr>
<tr>
<td>(y_2 = 11.75%)</td>
<td>2</td>
<td>(f_2 = 11.5%)</td>
</tr>
<tr>
<td>(y_3 = 11.25%)</td>
<td>3</td>
<td>(f_3 = 10.25%^*)</td>
</tr>
<tr>
<td>(y_4 = 10.00%)</td>
<td>4</td>
<td>(f_4 \approx 6.25%^*)</td>
</tr>
<tr>
<td>(y_5 = 9.25%)</td>
<td>5</td>
<td>(f_5 \approx 6.25%^*)</td>
</tr>
</tbody>
</table>

* If computed exactly, \(f_3 = 10.26\%; f_4 = 6.33\%; f_5 = 6.30\% \) (we’ll show this below)

Bootstrapping Fwd Rates from Zeroes 7

Example 2: "Formal" forward rates

<table>
<thead>
<tr>
<th>Zero-Coupon Rates</th>
<th>Bond Maturity</th>
<th>(1yr) Fwd Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1 = 12.00%)</td>
<td>1</td>
<td>(f_1 = y_1 = 12%)</td>
</tr>
<tr>
<td>(y_2 = 11.75%)</td>
<td>2</td>
<td>(f_2 = 11.5%)</td>
</tr>
<tr>
<td>(y_3 = 11.25%)</td>
<td>3</td>
<td>(f_3 = 10.26%^*)</td>
</tr>
<tr>
<td>(y_4 = 10.00%)</td>
<td>4</td>
<td>(f_4 \approx 6.33%^*)</td>
</tr>
<tr>
<td>(y_5 = 9.25%)</td>
<td>5</td>
<td>(f_5 \approx 6.30%^*)</td>
</tr>
</tbody>
</table>

* If computed quickly, \(f_3 = 10.25\%; f_4 = 6.25\%; f_5 = 6.25\% \)
Fwd Rate & Expected Future Short Rate

- **Q:** Does IFR equal expected short? (is $f_t = r_t$?)
- **A:** Interpreting the yield curve under uncertainty
 - **Short perspective** *(often observed \Rightarrow exam material)*
 - liquidity preference theory (investors)
 - liquidity premium theory (issuer)
 - **Others:** NOT Exam Material
 - Expectations hypothesis
 - Long perspective
 - Market Segmentation vs. Preferred Habitat

Fwd Rate & Exp. Future Short Rate 2

- **Short perspective**
 - liquidity preference theory (“short” investors)
 - investors need to be induced to buy LT securities
 - example: 1-year zero at 8% vs. 2-year zero at 8.995%
 - liquidity premium theory (issuer)
 - issuers prefer to lock in interest rates
 - $f_2 \geq E[r_2]$
 - $f_2 = E[r_2] + \text{liquidity (or risk) premium}$

Fwd Rate & Exp. Future Short Rate 3

- **Long perspective** *(NOT Exam Material)*
 - “long investors” wish to lock in rates
 - roll over a 1-year zero at 8%
 - or lock in via a 2-year zero at 8.995%
 - $E[r_2] = f_2$
 - $f_2 = E[r_2] - \text{liquidity (or risk) “premium”}$
Fwd Rate & Exp. Future Short Rate 4

• Expectation Hypothesis (NOT Exam Material)
 • risk premium = 0 and \(E[r_2] = f_2 \)
 • idea: “arbitrage”

• Market segmentation theory (NOT Exam Material)
 • idea: clienteles
 » ST and LT bonds are not substitutes
 • reasonable?

• Preferred Habitat Theory (NOT Exam Material)
 • investors do prefer some maturities
 • temptations exist

Fwd Rate & Exp. Future Short Rate 5

• In practice
 • liquidity preference + preferred habitat
 » hypotheses have the edge

• Example 2 (continued)

Fwd Rate & Exp. Future Short Rate 6

• Example 2: “Quick & dirty” forward rates

<table>
<thead>
<tr>
<th>Zero-Coupon Rates</th>
<th>Bond Maturity</th>
<th>(1yr) Fwd Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1 = 12.00%)</td>
<td>1</td>
<td>(f_1 = y_1 = 12%)</td>
</tr>
<tr>
<td>(y_2 = 11.75%)</td>
<td>2</td>
<td>(f_2 = 11.5%)</td>
</tr>
<tr>
<td>(y_3 = 11.25%)</td>
<td>3</td>
<td>(f_3 = 10.25%^*)</td>
</tr>
<tr>
<td>(y_4 = 10.00%)</td>
<td>4</td>
<td>(f_4 = 6.25%^*)</td>
</tr>
<tr>
<td>(y_5 = 9.25%)</td>
<td>5</td>
<td>(f_5 = 6.25%^*)</td>
</tr>
</tbody>
</table>

\(^*\) If computed exactly, \(f_3 = 10.26\%; f_4 = 6.33\%; f_5 = 6.30\% \) (we’ll show this below)
Fwd Rate & Exp. Future Short Rate 7

Example 2: “Quick” expected future short rates

<table>
<thead>
<tr>
<th>Period</th>
<th>(1yr) Fwd Rate</th>
<th>Expected short rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f_1 = y_1 = 12%</td>
<td>N.A</td>
</tr>
<tr>
<td>2</td>
<td>f_2 = 11.5%</td>
<td>E(y_1') = r_2 = 11%</td>
</tr>
<tr>
<td>3</td>
<td>f_3 = 10.25%</td>
<td>E(y_1'') = r_3 = 9.75%</td>
</tr>
<tr>
<td>4</td>
<td>f_4 = 6.25%</td>
<td>E(y_1''') = r_4 = 5.75%</td>
</tr>
<tr>
<td>5</td>
<td>f_5 = 6.25%</td>
<td>E(y_1''''') = r_5 = 5.75%</td>
</tr>
</tbody>
</table>

*: Assumes a constant 0.5% per year liquidity premium

Fwd Rate & Exp. Future Short Rate 8

LT rates aggregate exp’d short rates + LP

Example 3:
- short term rates: r_1 = r_2 = r_3 = 10%
- liquidity premium = constant 1% per year

\[y_1 = r_1 = 10\% \]
\[y_2 = \sqrt{(1 + r_1)(1 + f_2)} - 1 = \sqrt{(1+10\%)(1+10\%+1\%)} - 1 = 10.5\% \]
\[y_3 = \frac{1}{2}(1 + r_1)(1 + f_2)(1 + f_3) - 1 = \frac{1}{2}(1+10\%)(1+11\%)(1+11\%) - 1 = 10.67\% \]

Measurement: Zeroes vs. Coupon Bonds

- Zeroes
 - ideal
 - lack of data may exist (need zeroes for all maturities)

- Coupon Bonds (Next 4 pages NOT Exam Material)
 - plentiful
 - coupons and their reinvestment
 - low coupon rate vs. high coupon rate
 - short term rates → they may have different YTM
Measurements with Coupon Bonds

• Example
 • short rates are 8% & 11% for years 1 & 2; certainty
 • 2-year bonds; Par = $1,000; coupon = 3% or 12%
 • Bond 1:
 \[\frac{\$30}{(1+8\%)} + \frac{\$1,030}{(1+8\%)(1+11\%)} = \$894.78 \Rightarrow YTM = 8.98\% \]
 • Bond 2:
 \[\frac{\$120}{(1+8\%)} + \frac{\$1,120}{(1+8\%)(1+11\%)} = \$1,053.87 \Rightarrow YTM = 8.94\% \]

Measurements with Coupon Bonds 2

• Example
 • 2-year bonds; Par = $1,000; coupon = 3% or 12%
 • Prices: $894.78 (coupon = 3%); $1,053.87 (coupon = 12%)
 • Year-1 and Year-2 short rates
 \[\begin{align*}
 &\text{\$894.78} = d_1 \times 30 + d_2 \times 1,030 \\
 &\text{\$1,053.87} = d_1 \times 120 + d_2 \times 1,120
 \end{align*} \]
 • Solve the system: \(d_2 = 0.8417, d_1 = 0.9259 \)
 • Conclude ...

Measurements with Coupon Bonds 3

• Example (continued)
 \[r_1 = \frac{1}{d_1} - 1 = \frac{1}{0.9259} - 1 \Rightarrow r_1 = 8\% \]
 \[r_2 = \frac{1}{(1 + r_1) \times d_2} - 1 = \frac{1}{(1 + 8\%) \times 0.8417} - 1 \Rightarrow r_2 = 10\% \]
Measurements with Coupon Bonds

- **Practical problems**
 - pricing errors
 - taxes
 - are investors homogenous?
 - investors can sell bonds prior to maturity
 - bonds can be called, put or converted
 - prices quotes can be stale
 - market liquidity

- **Estimation**
 - statistical approach

Forward Rate Agreements

- **What**
 - contracts between 2 parties
to lock in forward interest rates

- **How?**
 - cash-settled contract
 - payment = interest cost change
 - on a nominal (or notional) sum of money
 - if interest rate at that time ≠ agreed-upon interest rate
 - **seller pays** the buyer if interest rate goes up
 - **buyer pays** the seller if interest rate goes down

Forward Rate Agreements 2

- **Amount to be paid**

\[
\text{amount paid by the FRA seller} = (\text{nominal amount of contract}) \times (1 + S) \times \left(\frac{\text{days the FRA runs}}{\text{days in the year}}\right)\]

- **Hedger**
 - By selling an FRA, can lock in interest on deposit
 - By buying an FRA, can lock in cost of loan

- **Example** (*Handout & PS#3*)
 - finding quotes & valuing FRA’s
 - Trading FRAs (arbitraging vs. return maximization)
Interest-Rate Derivatives *(Recap. slide)*

- Forward rate agreements (FRA)
 - OTC contract; users “lock in” implied forward rate
- Interest Rate Futures (IRF): ED & T-Bill Futures
 - Exchange traded futures contracts
 - Underlying: 90-day interest rate *(contrast with FRA)*
- Interest-rate Swaps
 - OTC contract; converts exposure: fixed \rightarrow floating
 - Bundle of “time against time +6 months” FRA’s
- Government bonds futures
 - Exchange-traded futures on a long-term government bond

T-Bill & Eurodollar Futures

- Money-market instruments
 - Zero-coupon bonds
 - Quotes vs. actual yields
- vs. Long-term bonds
 - Quotes
 - T-notes and T-bonds
 - Corporate bonds
 - Accrued interest

Short-term Bond Prices & Yield Quotes

- T-bills
 - Sold at discount to par (typ. $10,000; minimum is $1,000)
 - “capital gain” treated as interest; federal tax only
 - Primary market: U.S. Treasury auctions
 - Weekly (Mondays; maturity = mostly 91 or 182 days)
 - Formerly: every trimester (52 weeks)
 - Secondary market
- Other short-term instruments
 - Same conventions for quotes *(similar idea for futures)*
Short-term Bond Prices & Yield Quotes 2

- Yields on T-Bills
 - bank discount yield: \(\frac{\text{Par} - \text{Price}}{\text{Par}} \times \frac{360}{n} \)
 - used for futures
 - bond equivalent yield: \(\frac{\text{Par} - \text{Price}}{\text{Price}} \times \frac{365}{n} \)
 - effective annual yield: \(\frac{\text{Par}^{\frac{365}{n}}}{\text{Price}} - 1 \)

Short-term Bond Prices & Yield Quotes 3

- BDY example
 - a 60-day T-bill has a BDY of 6.81% (based on ask)
 - in the newspaper, the bill would be quoted at
 \[100(1 - 0.0681/6) = 98.865 \]
 - the bill’s ask price would be
 \[= $10,000 \times [100\% - (6.81\% / 6)] \]
 \[= $9,886.50 \]
 - the bill’s effective annual yield would be
 \[\text{EAY} = \left(\frac{10,000}{9,886.50}\right)^{\frac{365}{60}} - 1 \]
 \[= 7.19\% \]

Eurodollar Futures

- What?
 - futures contract on 3-month, $1m eurodeposit
 - underlying = hypothetical deposit “made” at LIBOR, starting 3rd Wed. of delivery month
 - traded on CME/SIMEX, cash-settled
 - maturities up to 10 years into the future

- Our discussion
 - market microstructure
 - futures rate
 - vs. forward rate
 - pricing: theory, empirics and practice
Eurodollar Futures 2

- Market microstructure
 - contracts available
 - long maturities (up to 10 years)
 » M-J-S-D
 - short maturities
 » more months
 - settlement
 - in cash
 - 3rd Wednesday of delivery month (why?)
 - last mark-to-market rate is 90-day LIBOR, settlement day
 - underlying variable = 3-month Libor at settlement

Eurodollar Futures 3

- Pricing example
 - Quotes
 - \(Z = \) index value = 100 - (annualized) futures deposit rate
 - contract value
 \[= 10,000 \times (100 - 0.25(1 - Z)) = 1,000,000 \times (1 - 0.25(100 - Z)\%) \]
 - Example: June 2003 futures; \(Z = 95.53 \)
 - annualized futures deposit rate \(= (100 - 95.53)\% = 4.47\% \)
 - contract value
 \[= 1,000,000 \times 100 \times 0.25 \times 0.47 = 988,825 \]
 » 1 b.p. change => $25 change in contract value
 - final marking to market
 - on expiration day, futures price \(= 100 - R \)
 » \(R = 90\)-day Libor (quarterly basis and actual/360 day count)

Eurodollar Futures 4

- FRA and IRF as hedging tools
 - FRA
 - seller (short) pays the buyer if interest rate goes up
 » so: seller locks in the interest return on a deposit
 » i.e.: seller gets fixed rate (and pays variable rate)
 - buyer (long) pays the seller if interest rate goes down
 » so: buyer locks in the cost of a loan
 » i.e.: buyer gets variable rate (and pays fixed rate)
 - IRF: just the opposite
 » long ("buyer") locks in the interest return on a deposit
 » short ("seller") locks in the cost of a loan
Eurodollar Futures 5

- FRA and IRF as hedging tools (continued)
 - FRA
 - if you want to hedge against rates’ going up, then, buy an FRA
 » buyer locks in cost of loan
 » i.e., hedged buyer pays fixed rate
 - IRF: just the opposite
 - if you want to hedge against rates’ going up, then “keep your shorts on”
 » i.e., sell an IRF

Eurodollar Futures 6

- Futures rate vs. forward rate
 - theory
 - forward rate < futures rate (why?)
 - empirically
 - short maturity
 » not much of a difference
 - long maturity
 » much larger difference
 - practice (---/---)

Eurodollar Futures 7

- Futures rate vs. forward rate
 - (---/---) in practice
 - assume interest rates are continuously compounded
 - forward rate = futures rate - (1/2) $\sigma^2 t_1 t_2$
 - where
 » σ = annual % std deviation of LIBOR
 » t_1 = contract delivery (in years)
 » t_2 = end of delivered eurodeposit (in years)
 - numerical example?
T-Bill Futures (NOT Exam Material)

• Basic idea
 • similar to eurodollar futures (size, dates, etc.)
 • Differences:
 – underlying variable = 13-week (3-mo) T-Bill at settlement
 – Tick = \(\frac{1}{2} \) point (vs. 1 pt for Eurodollar futures)
 – Not traded since 2003! Only of historical interest

• Quotes
 • \(Z \to \) index; contract value = $1m \(\left[1 - 0.25 \times (100-Z)\% \right] \)
 • Example:
 – 1.25% T-bill discount rate for delivery month \(\Rightarrow Z=98.75 \)

T-Bill Futures 2

• Market microstructure
 • contracts available at the CME
 – maturities
 » M-J-S-D
 – nominal value: $1 million
 • settlement
 – in cash
 – 3rd Wednesday of delivery month
 – last mark-to-market rate is T-bill rate, settlement day
 » highest discount rate accepted in U.S. Treasury’s 91-day T-bill auction in week of 3rd Wed. of contract month