Derivatives & Risk Management

- Interest-rate derivatives
 - FRA’s & T-Bill futures
 - Swaps
 » Hedging International Financing Transactions
 » All-In Cost of Capital Computations
- T-Bond & T-Note futures
 - This lecture

Part III: Interest Rate Derivatives

Interest-Rate Derivatives (Recap. slide)

- Forward rate agreements (FRA)
 - OTC contract; users "lock in" implied forward rate
- Interest Rate Futures (IRF) and T-Bill Futures
 - exchange traded futures contracts
 - underlying: 90-day interest rate (*contrast with FRA*)
- Interest-rate Swaps
 - OTC contract; converts exposure: fixed ↔ floating
 - Bundle of "time against time+6months" FRA’s
- Government bonds futures
 - Exchange-traded futures on a long-term government bond
T-Bond & T-Note Futures: Outline

- Bond quotes
 - money-market instruments
 - T-notes & T-bonds
 - corporate & municipal bonds
- T-Bond & T-Note futures
 - Pricing
 - Conversion factor
 - Options, including wild card

Bond Prices and Yield Quotes

- Money-market instruments
 - zero-coupon bonds
 - quotes vs. actual yields
- Long-term bonds
 - quotes
 - US government T-notes & T-bonds
 - corporate & municipal bonds
 - accrued interest

Long Term Bond Prices & Yield Quotes

- US government
 - T-Notes (< 10 years) vs. T-Bonds (10 to 30 years)
 - denominations (> $1,000), coupons (semi-annual)
 - bonds may be callable (typically last 5 years)
 - prices
 - quoted bond prices
 - (percentage + 32nds of 1%) of face value
 - accrued interest
 - \[\frac{n}{N} \] = \frac{\text{actual # of days}}{\text{actual # of days in ref. period}}
 - example: March 1 to July 7 \(\Rightarrow n = 124 \text{ days} \)
Long Term Bond Prices & Yield Quotes 2

- Corporate & Municipal Bonds *(NOT Exam Material)*
 - denominations (> $1,000), coupons (semi-annual)
 - bonds may be *callable* (or, more rarely, *puttable*)
 - prices
 - quoted bond prices
 - munis: *(% + 8/ths %)* of face value
 - corporates *(decimal)*: *(% + 100/ths %)* of face value
 - accrued interest
 - 30/360 (vs. T-bonds: convention = actual/actual)
 - example: March 1 to July 7 = 4*30+2=122 days

T-Bond & T-Note Futures

- Contracts available *(CBOT; Hall, Table 6.1)*
 - T-bond futures
 - 2-year, 5-year, 10-year T-note futures
 - M-J-S-D cycle
- Long party
 - pays: quoted futures price *times* conversion factor + accrued interest
 (for each $100 of quoted face value)
- Short party
 - may deliver any bond – with some restrictions

T-Bond & T-Note Futures 2

- Options for short party
 - 1. bond to deliver
 - range of bonds can be delivered
 - dealt with by:
 - limit in bonds that can be delivered
 - conversion factor (varies with bond delivered)
 - 2. timing
 - timing sequence and futures contract trading
 - 3. wild card
 - closing times: bond market’s vs. futures market’s
T-Bond & T-Note Futures 3

• 1. Delivery option

<table>
<thead>
<tr>
<th>Futures contract</th>
<th>Time to maturity (from 1st day of delivery month)</th>
<th>Face value</th>
<th>Price quotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-bond</td>
<td>10 - 14 years not callable for 15 yrs</td>
<td>$200,000</td>
<td>-</td>
</tr>
<tr>
<td>10-year T-note</td>
<td>15 yrs (10+6.5 yrs not callable for 6.5 yrs)</td>
<td>$100,000</td>
<td>-</td>
</tr>
<tr>
<td>5-year T-note</td>
<td>5-25 yrs (10+4.16 yrs)</td>
<td>$100,000</td>
<td>-</td>
</tr>
<tr>
<td>2-year T-note</td>
<td>5-25 yrs (10+1.91 yrs)</td>
<td>$200,000</td>
<td>-</td>
</tr>
</tbody>
</table>

T-Bond & T-Note Futures 4

• Conversion factor
 • why?
 » short party has large range of bond choices
 » so the playing field must be “ leveled”
 • what?
 » commit short party to deliver “nominal” 6% T-bond
 (used to be 8% before March 2000; still 6% despite...)
 • how?
 » adjust bond price (to be paid by long party)
 » as if its annual YTM were 6% (3% semi-annual)
 » on 1st day of delivery month
 • in practice
 » CME Group (prev. CBOT) builds comprehensive tables

T-Bond & T-Note Futures 5

• Computing conversion factors
 – A. Simplification #1
 • what?
 » bond maturity and times to coupon payment date
 » are rounded off to closest (i.e., earliest) 3 months
 • examples
 » bond has 20 years and 2 months to maturity
 → assume bond has 20 years to go
 » first coupon is to be paid in 4 months
 → assume coupons start in 3 months
T-Bond & T-Note Futures 6

- Computing conversion factors
 - B. Simplification #2
 - I. bond has exact # of half years after rounding off
 - > assume 1st coupon is paid in 6 months
 - > assume other coupons are paid every 6 months thereafter
 - example: bond w/20 years & 56 days left, 10% coupon
 \[
 P = QP = \sum_{n=1}^{20} \frac{\$5}{(1 + 0.03)^n} + \frac{\$100}{(1 + 0.03)^{20}} = \$146.23
 \]
 - conversion factor = \[
 \frac{P}{\text{par}} = \frac{\$146.23}{\$100} = 1.4623
 \]

T-Bond & T-Note Futures 7

- Computing the conversion factors
 - B. Simplification #2 (continued)
 - II. bond doesn’t have exact # of half years after rounding off
 - means there must be an extra 3-month period
 - > assume 1st coupon is paid in 3 months
 - > assume other coupons are paid every 6 months thereafter
 - example: bond w/18 years & 96 days left, 8% coupon
 \[
 QP = \frac{1}{(1 + 0.03)^3} \left(\sum_{n=4}^{18} \frac{\$4}{(1 + 0.03)^n} + \frac{\$100}{(1 + 0.03)^{18}} \right) = \$123.99
 \]

T-Bond & T-Note Futures 8

- Computing the conversion factor
 - B. Simplification #2 (continued)
 - II. (continued)
 - > still need to take accrued interest into account
 - accrued interests would be paid at bond purchase
 - so no discounting of those
 \[
 P = QP - \text{accrued int qrest} = \$123.99 - \frac{\$4}{2} = \$121.99
 \]
 - conversion factor = \[
 \frac{P}{\text{par}} = \frac{\$121.99}{\$100} = 1.2199
 \]
T-Bond & T-Note Futures 9

- Cheapest-to-deliver bond
 - Long party
 - Must take delivery of bond chosen by short party
 - Worth: bond price + accrued interest
 - Short party
 - Short party can deliver any bond
 - Hence, it will buy the cheapest one on the market
 - That meets the requirements of the exchange
 - Thus, must be bond for which:
 - Futures QP times conversion factor - bond QP is highest

T-Bond & T-Note Futures 10

- Cheapest-to-deliver bond: example
 - Futures price: current quote = 93:08
 - There are 3 deliverable bonds, with QP and CF:
 - #1 QP=99:16 CF=1.0382
 - #2 QP=143:16 CF=1.5188
 - #3 QP=119:24 CF=1.2615
 - Cheapest to deliver? Compute the cost of delivering
 - $ loss for short = cost of buying bond spot - proceeds from long
 - #1: 99.50 - (93.25 x 1.0382) = $2.69
 - #2: 143.50 - (93.25 x 1.5188) = $1.87 (smallest loss)
 - #3: 119.75 - (93.25 x 1.2615) = $2.12

T-Bond & T-Note Futures 12

- 2. Timing option
 - 3-day delivery sequence
 - Short can initiate any bus. day in delivery month minus 2 days
 - Day 1 (position day)
 - Short informs clearing house of intent to deliver
 - Day 2 (notice of intention day)
 - Clearing corp. matches oldest long to delivering short
 - Short invoices long
 - Day 3 (delivery day)
 - Short delivers to long
 - Long pays
 - Title passes (long has all ownership rights & liabilities)
T-Bond & T-Note Futures 13

2. Timing Option (continued)

- last day of trading
 - deliverable contract stops trading
 - 7th business day before last business day
 - of delivery month
- settlement
 - in that period, all positions must be settled by delivery
 - but short position still chooses when to deliver
- value
 - short party may wait for cash prices to drop
 - so the option is valuable & reflected in futures price

T-Bond & T-Note Futures 11

3. Wild Card option

- differences in closing time
 - futures stop trading on CBOT at 2PM, CST
 - intent to deliver by 8PM, CST
 - T-bonds stop trading after 2PM CST (4PM EST)
- option for short party
 - can exploit decreases in cash prices & cheapest bond
 - by deciding to deliver after trading on futures ends
- consequences for option pricing
 - theory
 - practice: assume all is known and use F-S parity

T-Bond & T-Note Futures 14

T-bond futures pricing (NOT Exam Material)

- theory
 - options need to be priced
 - tools to do see: Options
- if options were worthless
 - assume all is known
 - use forward-spot parity (F = PV of future cash-flows)
 - \[F_0 = (B_0 - I) e^{rT} \]
 - or \[F_{T-t} = (B_{T-t}) e^{r(T-t)} \]
T-Bond & T-Note Futures 15

- **Quotes & Marking to Market**
 - example: go long 1(one) T-bond futures at open

<table>
<thead>
<tr>
<th>Time</th>
<th>Futures Price</th>
<th>Margin Requirement</th>
<th>Periodic Cash Flow</th>
<th>Cumulative Cash Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-11-02 (Morning)</td>
<td>$103,750</td>
<td>$2,700(a)</td>
<td>-$2,700</td>
<td>-$2,700</td>
</tr>
<tr>
<td>01-11-02 (Close)</td>
<td>$102,988.75</td>
<td></td>
<td>-$781.25</td>
<td>-$3,481.25</td>
</tr>
<tr>
<td>01-15-02 (Close)</td>
<td>$104,750</td>
<td></td>
<td>-$1,781.25</td>
<td>-$5,262.50</td>
</tr>
<tr>
<td>01-18-02 (Close)</td>
<td>$102,750</td>
<td></td>
<td>-$2,000</td>
<td>-$7,262.50</td>
</tr>
<tr>
<td>01-22-02 (Close)</td>
<td>$103,750</td>
<td>+ $1,000</td>
<td>-$2,700</td>
<td>-$9,962.50</td>
</tr>
<tr>
<td>Then offset at $103,750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Initial margin (Maintenance = $2,000)