Derivatives & Risk Management

First Week:
- Part A: Option Fundamentals
 - payoffs
 - market microstructure

Next 2 Weeks:
- Part B: Option Pricing
 - fundamentals: intrinsic vs. time value, put-call parity
 - introduction to the Black-Scholes pricing model
 - binomial trees & risk-neutral valuation

Part V:
Option Pricing Basics

Option Pricing Principles

- Fundamentals
 - time value vs. intrinsic value
 - key determinants of option values
 - American vs. European options – Early exercise

- Put-call parity
 - non-dividend paying stocks
 - dividend adjustment

- Option pricing
 - Black-Scholes formula

Option Pricing Principles: Notation

- X: Strike price = exercise price
- c: European call option price
- p: European put option price
- C: American call option price
- P: American put option price
- t: Current time
- T: Maturity = time when option expires
- S_t: Spot price at time t
- σ: Volatility of the underlying’s price
- D: PV of Dividends
- r: Relevant risk-free rate (continuous compounding)

Option Pricing Principles 2

- intrinsic value vs. time value
 - intrinsic value
 - calls: Max(0, $S_t - X$)
 - put: Max(0, $X - S_t$)
 - t value = option premium minus intrinsic value
 - at worst, equal to 0^+ (nope: European vs. American)
 - strictly positive for out-of-the-money options
 - usually positive for in-the-money options

Option Pricing Principles 3

- Key determinants of option prices
 - American options vs. European options
 - at least as valuable
 - equal values at maturity
 - time to maturity
 - American options: $T \uparrow \Rightarrow P \uparrow$ and $C \uparrow$
 - European options?
 - strike price
 - $X \uparrow \Rightarrow P \uparrow$ but $C \downarrow$
Option Pricing Principles 4

- Key determinants of option prices (continued)
 - price of underlying asset
 - $S_t \uparrow \Rightarrow p&P \downarrow$ but $c&C \uparrow$
 - Dividends
 - $D \uparrow \Rightarrow c&C \downarrow$ but $p&P \uparrow$
 - IV (European options) vs. TV effect (American options)
 - volatility of underlying asset
 - $\sigma \uparrow \Rightarrow p&P \uparrow$ and $c&C \uparrow$ (intuition?)
 - hard floors vs. soft floors

Option Pricing Principles 5

<table>
<thead>
<tr>
<th>Variable</th>
<th>c</th>
<th>p</th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td>X</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>$T-t$</td>
<td>$?$</td>
<td>$?$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>σ</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>r</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td>D</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
</tbody>
</table>

Option Pricing Principles 6

- Hard and Soft Floors
 - hard floor (American calls)
 - $C_t = \text{Max}[0, S_t - X]$
 - if not satisfied, arbitrage exists (buy call & strike now)
 - soft floor (all calls, but only on non-dividend paying stocks)
 - $S_t \leq C_t = \text{Max}[0, S_t - X/(1+r)^T]$
 - if not satisfied, arbitrage exists (buy call & risk-free bond)
 - consequence: early exercise of American calls is not optimal if the underlying asset pays no dividends

Option Pricing Principles 7

- Early exercise (American calls)
 - non-dividend paying stocks
 - never optimal to exercise early
 - intuition: $C_t = \text{Max}[0, S_t - X/(1+r)^T] > \text{Max}[0, S_t - X]$
 - corollary: same bound for European calls on such assets
 - dividend paying stocks?
 - early exercise may be optimal…
 - … but only if stock pays large dividend prior to maturity

Option Pricing Principles 8

- Hard and Soft Floors (continued)

Question:
Suppose an American call option is written on Nortel stock. The exercise price is $105 (\$105$) and the present value of the exercise price is $100.

(a) What is the hard floor price of the option if Nortel stock sells for $160? Sketch a graph of the hard floor option prices against (i.e., in terms of) the Nortel stock's price.

(b) At a stock price of $125, you notice the option selling for $18. Would this option price be an equilibrium price? Explain.

Option Pricing Principles 9

- Hard and Soft Floors (continued)

Answer:
(a) Hard floor price = $V_t - X = $160 - $105 = $55.
(b) An option price of $18 is below the hard floor price of $20. In this case, everyone would want the call option. You could then acquire a share of Nortel stock for less than the current market price. Simply buy the option (for $18), exercise it (paying $105), and you would then own a share of Nortel for a total price of $123.
Option Pricing Principles 10

- Hard and Soft Floors (American puts)
 - Hard floor
 - Max[0, X - S_t]
 - if not satisfied, arbitrage exists
 - Soft floor?
 - Max[0, X / (1+r)^T - S_t]
 - BKM4 Fig. 21.4

Option Pricing Principles 11

- Early exercise (American puts)
 - can be optimal to exercise early
 - intuition 1: stock price cannot fall below 0
 - intuition 2: T ↑ ⇒ X / (1+r)^T ↓
 - impact of dividend payments
 - dividends ↑ ⇒ probability of early exercise ↓

Options: Early Exercise (Recap)

- Calls
 - often not optimal
 - never optimal for non-dividend paying stocks
 - importance of capturing dividends
- Puts
 - can be optimal to exercise early
 - impact of dividend payments
 - dividends ↑ ⇒ probability of early exercise ↓

Put-Call Parity

- Put-call parity
 - European options only
 - if the payoffs of 2 portfolios are equal
 - Intuition
 - “reverse engineer” the prices
 - examples

Put-Call Parity 2

- Intuition

Put-Call Parity 3

- Put-call parity

\[
\begin{array}{c|c|c|c}
\text{ portfolio } & \text{ S_T - X } & \text{ X - S_T } & \text{ cash now} \\
\hline
\text{1. buy a call} & S_T - X & 0 & -c \\
\text{OR} & & & \\
\text{2a. buy a put} & 0 & X - S_T & -p \\
\text{2b. sell disc. bond} & -X & -X & X / (1+r)^T \\
\text{2c. buy stock} & S_T & S_T & -S_0 \\
\text{2. Total} & S_T - X & 0 & \\
\end{array}
\]

- hence: \(c = -p + X / (1+r)^T - S_0 \) and thus \(c = p + S_T - X / (1+r)^T \)
Put-Call Parity 4

Question:
European put and a European call on the same stock
exercise price $X = 75$
same expiration dates

The current price of the stock is $68.
The put’s current price is $6.50 higher than the call’s price
A riskless investment over the time until expiration yields 3 percent.

Given this information, is there any riskless profit opportunities available?

Put-Call Parity 5

Answer:
According to the parity equation:

$V_P - V_C = \left[\frac{X}{1 + r_f} \right] - V_S = \left[\frac{75(1 + 0.03)}{1} \right] - 68 = 54.82.$

Thus, with the put being priced $6.50 higher than the call, the two options are out of
parity. A riskless arbitrage opportunity would exist:

Put-Call Parity 6

Answer:
A riskless arbitrage opportunity exists:

Sell the stock short......................... $68.00
Sell the put option......................... $6.50
Buy the call option............... $74.50
Proceeds

Invest the proceeds at the riskless rate of 3%. At maturity,
you will have the value at expiration of $76.74 = \left[74.50 \times 1.03 \right].
Also, you can acquire a share of stock (to cover the short sale) for $75, no matter what happens to the stock price.

You are assured $1.74 without putting any of your own money at risk

Put-Call Parity 7

• Put-call parity (continued)

• continuous-time version

$\begin{align*}
& c = p + S_t - X e^{r(T-t)} \\
& c - p = S_t - X e^{r(T-t)} \\
& \text{dividends} \\
& c = p + PV(S_T) - PV(dividend) - \frac{X}{(1+r)^T}
\end{align*}$

Put-Call Parity 8

• Extensions (NOT Exam Material)

• American options; $D = 0$

$S - X < C - P < S - X e^{r(T-t)}$ (H8 eq. 10.4)

• European options; $D > 0$

$c - p = S - D - X e^{-r(T-t)}$ (H8 eq. 10.7)

• American options; $D > 0$

$S - D - X < C - P < S - X e^{-r(T-t)}$ (H7, 9.8 p. 215)

$S - D - X < C - P < S - X e^{-r(T-t)}$ (H8 eq. 10.11)

Option Pricing Methods

• Analytical

• Black-Scholes

• pluses (quick) & minuses (European calls, assumptions)

• Numerical

• Binomial Trees

• Monte Carlo Methods

• Finite difference Methods

• Analytical Approximation
Option Pricing – Key Problem

• Uncertainty
 • we don’t know future stock prices

• Solution
 • Assume a distribution for periodic returns
 • Assume a stochastic process for stock prices

Option Pricing in Practice

• Black-Scholes
 • gives price of European call
 \[c = e^{-r(T-t)}[S N(d_1)e^{r(T-t)} - X N(d_2)] \]
 where
 \[d_1 = \frac{\ln(S/X) + (r + \sigma^2/2)(T-t)}{\sigma\sqrt{T-t}} \]
 \[d_2 = \frac{\ln(S/X) + (r - \sigma^2/2)(T-t)}{\sigma\sqrt{T-t}} \]

• interpretation?

Option Pricing in Practice 2

\[c = e^{-r(T-t)}[S N(d_1)e^{r(T-t)} - X N(d_2)] \]

• \(N(z) = \text{Prob}(Z<z) \)
 • \(Z \) is standard normal

• \(N(d_1) \)
 • probability of exercise.

• \(XN(d_2) \)
 • expected pay-out at exercise

• \(SN(d_1\exp(r(T-t))) \)
 • expected value of the stock price, if exercised.

Option Pricing in Practice 3

• Black-Scholes (continued)
 • gives price of European call
 • price of European put?
 • use put-call parity
 • intuition:
 • American options?
 • optimality of early exercise

Numerical Pricing Methods

• Risk-Neutral valuation

• Methods
 • Binomial Trees
 • Early Exercise Possible
 • Monte Carlo Methods
 • Several Underlying Variables Possible
 • Finite difference Methods
 • Early Exercise Possible
 • Analytical Approximation
 • American Options
Risk-Neutral Valuation

• **Approach**
 • introduce binomial trees now
 • to start thinking about
 – risk-neutral valuation of derivatives
 – and dynamic hedging strategies

• **Applicability**
 • use risk-neutral valuation throughout the course
 • return to binomial trees in Parts III & IV

Example

• **Call Option example** *(H7 Fig. 11.1; H8 12.1):*
 • 3-month call option with strike price \(X = 21 \)
 • 3-month call option with strike price \(X = 21 \)

 - Stock Price = \$22
 - Call Price = \$1
 - Stock Price = \$20
 - Call Price = ?
 - Stock Price = \$18
 - Call Price = \$0

 • price of the call today?
 – use risk-neutral valuation

Example 2

• **Riskless Portfolio**
 • Portfolio
 - _LONG_ \(\Delta \) shares
 - _SHORT_ 1 call option
 • Portfolio is **riskless**
 - if \(22\Delta - 1 = 18\Delta \), i.e. if \(\Delta = 0.25 \)
 - _LONG_ 0.25 shares and _SHORT_ 1 call option

Example 3

• **Value of the riskless portfolio**
 - in 3 months
 • if the stock price moves up:
 \(22 \times 0.25 - 1 = 4.50 \)
 • if the stock price moves down:
 \(18 \times 0.25 - 0 = 4.50 \)
 - today
 • PV of 4.50 at the risk-free rate (why?)
 • if annual continuously-compounded risk-free rate is 12%, portfolio is worth: \(4.50 e^{-0.12 \times 0.25} = 4.367 \)

Example 4

• **Value of the Option Today**
 • entire portfolio
 » worth \$4.367
 • shares
 » worth \(\Delta \times S = 0.25 \times 20 = \$5 \)
 • _Value of the option_
 » is therefore: \(\$5 - 4.367 = \$0.633 \)

Binomial Option Pricing Fundamentals

• **Why?**
 • approximate the movements in an asset’s price
 • to simplify the pricing of derivatives on the asset

• **What?**
 • “discretize” underlying asset’s price movements
 • _and_ value options as if in a risk-neutral world

• **How?**
 • asset price at the BEGINNING of any period can lead to
 • only 2 stock prices at the END of that period
Binomial Trees

- Asset Price Movements
 - divide the time from t to T into small intervals Δt
 - in each time interval, assume the asset’s price S can move UP ↑
 - by a proportional amount u
 - move DOWN ↓
 - by a proportional amount d

Tree Parameters

- What?
 - p, u, and d
- Parameter values?
 - tree must give correct values
 - for the mean & standard deviation
 - of the stock price changes
 - in a risk-neutral world
- Simplification
 - tree is recombining: $u = 1/d$

Risk-Neutral Valuation

- Assumption
 - no arbitrage opportunity exists
- Basic idea
 - assume a binomial tree for asset price movements
 - create a riskless portfolio
 - stock plus option
 - riskless portfolio always possible with binomial tree
 - value the portfolio
 - if riskless, then risk-neutral valuation is OK
- Reference
 - Cox-Ross-Rubinstein (Journal of Financial Economics)
Risk-Neutral Valuation 3

- Riskless Portfolio
 - Portfolio
 - LONG \(\Delta \) shares
 - LONG 1 put option (why?)
 - \(S = 20 \)
 - \(\$18.18\Delta + 2.82 \)
 - Portfolio is riskless
 - if \(22\Delta = 18.18\Delta + 2.82 \) i.e \(\Delta = 0.738 \)
 - LONG 0.738 shares and LONG 1 put option

Risk-Neutral Valuation 4

- Value of the entire (riskless) portfolio
 - in 3 months
 - if the stock price moves up:
 - \(\times 22 \times 0.738 + 0 = \$16.24 \)
 - if the stock price moves down:
 - \(\times 18.18 \times 0.738 + 2.82 = \$13.42 + 2.82 = \$16.24 \)
 - today
 - PV of \$16.24 at the risk-free rate (why?)
 - if annual continuously-compounded risk-free rate is 12%, portfolio is worth: \(\$16.24 e^{-0.12 \times 0.25} = \$15.76 \)

Risk-Neutral Valuation 5

- Value of the Option Today
 - Entire portfolio
 - is worth \$15.76
 - Shares
 - are worth \(0.738 \times 20 = \$14.76 \)
 - Value of the put option
 - is therefore \$15.76 - \$14.76 = \$1.00

Risk-Neutral Valuation 6

- Generalization (H7 Fig. 11.2; H8 Fig. 12.2)
 - derivative
 - value \(f \)
 - expires at time \(T \)
 - is dependent on a stock

Risk-Neutral Valuation 7

- Riskless portfolio
 - LONG \(\Delta \) shares and SHORT 1 derivative
 - \(\Delta S = f \)
 - \(S_u \Delta - f_u \)
 - \(S_d \Delta - f_d \)
 - riskless
 - if \(S_u \Delta - f_u = S_d \Delta - f_d \) or \(\Delta = \frac{f_d - f_u}{S_u - S_d} \)

Risk-Neutral Valuation 8

- Value of the portfolio at time \(T \):
 - \((\text{up state}) S_u \Delta - f_u = S_d \Delta - f_d \) (down state)
- Value of the portfolio today:
 - \((S \Delta - f) e^{-rT} \)
 - and also
 - \(S \Delta - f \)
- Hence
 - \(f = S \Delta - (S \Delta - f) e^{-rT} \)
Risk-Neutral Valuation 9

- Thus:
 \[f = S \Delta - (Su \Delta - f_u) e^{-rT} \]
 \[\Delta = \frac{f_u - f_d}{Su - Sd} \]
- Substituting for \(\Delta \), we obtain
 \[f = [p f_u + (1-p) f_d] e^{-rT} \]
 \[p = \frac{e^{-rT} - d}{u - d} \]

Irrelevance of Stock’s Expected Return

- When valuing an option in terms of the underlying stock,
- the expected return on the stock is irrelevant

Original Example Revisited

- Call, H8 Fig. 12.1 (S = 20; X = 21; \(\Delta t = T = 3 \) months)
 \[Su = 22 \]
 \[f_u = 1 \]
 \[Sd = 18 \]
 \[f_d = 0 \]
- risk-neutral probabilities:
 \[p = \frac{e^{0.25} - d}{u - d} = \frac{e^{0.12} - 0.9}{1.1 - 0.9} = 0.6523 \]

Original Example Revisited 2

- H8 Fig. 12.1
 \[Su = 22 \]
 \[f_u = 1 \]
 \[Sd = 18 \]
 \[f_d = 0 \]
- Value of the option
 \[c = e^{-0.12 \times 0.25} \times [0.6523 \times \$1 + 0.3477 \times \$0] = \$ 0.633 \]

Risk-Neutral Valuation 10

- Interpretation
 \[f = [p f_u + (1-p) f_d] e^{-rT} \]
 \(p \) and \((1-p) \) can be interpreted as the risk-neutral probabilities of up & down movements
- Value of a derivative
 \(= \) its expected payoff
 \- in a risk-neutral world
 \- discounted
 \- at the risk-free rate

Original Example Revisited 3

- Key Result
 - risk-neutral valuation ("revisited")
 - coincides with the ("original") no-arbitrage valuation.
- Generalization
 - in general
 - when pricing derivatives
 - using risk-neutral valuation
 - is ok
Original Example Revisited 4

• Valuing the Stock
 • in a risk-neutral world
 – stock must also earn the risk-free rate
 • consequence
 – Since p is a risk-neutral probability
 – $20 \times e^{0.12 \times 0.25} = 22 \times p + 18 \times (1 - p)$
 – $p = 0.6523$

A Two-Step Call Option Example

• $H8$ Fig. 12.3 (X=21; u=1.1; d=0.9; T=6 months)

A Two-Step Call Option Example 2

• Call value (Fig. 12.4; X=21)

A Two-Step Put Option Example

• Fig. 12.7 (X=52; u=1.2, d=0.8, T=2 years)

A Two-Step Put Option Example 2

• European put value (Fig. 12.7; X=52)

A Two-Step Put Option Example 3

• American put value (Fig. 12.8; X=52)
Delta

- **Definition**
 - Delta (Δ) is the ratio
 » of the change in the price of a stock option
 » to the change in the price of the underlying stock

- **Dynamic hedging**
 - The value of Δ varies from node to node
 » Dynamic hedging needed!

Delta 2

- Riskless portfolio at a given node:
 - LONG Δ shares and SHORT 1 derivative
 \[\Delta S - f_u \]
 \[\Delta S = f_d \]
 - riskless
 \[\frac{S_u \Delta - f_u}{S_d \Delta - f_d} = 1 \]

Delta 3

- **European put**
 (S=50; X=52)
 \[\Delta = -0.4025 \]
 \[\Delta = 1 \]

- Value of Δ at node B
 \[= \frac{0-4}{72-48} = -1/6 \] (i.e., short 1 put and short 1/6 share)

- Value at node C
 \[= \frac{4-20}{48-32} = -1 \] (i.e., short 1 put and short 1 share)

- Value at node A
 \[= \frac{1.41-9.46}{60-40} = -0.4025 \] (short 1 put and 0.4025 share)