Derivatives & Risk Management

• Previous lecture set:
 – Forward outright positions & payoffs + NDFs
 – Forward price vs. current & future spot prices

• This lecture set – Part II (Futures)
 – Futures vs. forward
 • trade in the risk, standardization, right of offset
 – Stock Index Futures

Part II: Futures

Futures vs. Forwards

• Fundamentals
 – participants, major contracts, exchanges

• Differences w/ forward contracts (main ones)
 – “trading in the risk” vs. “trading in the commodity”
 • right of offset
 – standardized, exchange-traded (not OTC)
 • trading vs. clearing; Dodd-Frank / EMIR changes
 – marking-to-market / risk control

• Differences b/ forward & futures prices
 – Theory vs. practice and arbitrage

Futures vs. Forwards 2a

• Differences w/ forward contracts (main ones)
 – 1. exchange-traded
 • Where? (http://www.futuresindustry.org/volume-4.asp)
 – U.S.A.: CME-CBOT-NYMEX-KCBT, ICE-NYBOT-NYSE, ...
 – Abroad: EUREX-ISE, SSE, Boveups, Dalian, Shanghai, Ksoon, etc.
 • How?
 – Historically: participants in the “pits”
 • brokers (cust.) vs. traders (own) vs. broker-traders
 • commission brokers (cust.) vs. locals (own)
 – Now: overwhelmingly (CME) or solely (ICE) electronic trading

Futures vs. Forwards 3

• Differences w/ forward contracts (main ones)
 – 2. Regulation
 – United States
 • government: CFTC (plus SEC, Fed, Treasury)
 • self-regulation: futures industry (NFA), exchanges
 – Canada: markets vs. trading (NOT Exam Material)
 • provincial securities commissions vs. self
 • exception: WCE (federal regulation; now part of ICE)
 – 3. Corollaries of exchange-based trading
 – standardized contracts; right of offset
 • trading risk vs. commodity?
 • risk control mechanism
Futures vs. Forwards

3A. Contract standardization
- contract size
- expiry cycle
 - currencies (CME) and indices: M-J-S-D (peso, rand?)
 - corn (CBOT): M-M-Jul-S-D
- delivery dates
 - currencies: 3rd Wednesday of the month (delivery)
 - others: mostly 3rd Friday of the month
 - exceptions exist (ex.: KC Value Line: EOM; bond futures)
- other contract specifics
 - commodity grade, delivery arrangements (or cash settlement)
- price limits (corn: 30 cents/b., none in spot mo.) & position limits
- price quotes

Futures vs. Forwards (continued)
- reading futures quotes
 - terminology
 - open interest
 - ticks (cent for oil at NYMEX, 32nd of $ for bonds at CBOT, etc)
 - spot month (when the contract expires)
 - “nearby” vs. (first-, second-…) deferred contracts
 - reversing (= offsetting) a trade
 - newspaper info
 - Hull Table 2.2, BKM
 - in class: using FT Market Data

Futures vs. Forwards

3B. Right of offset
- OTC market: Commitment
 - Really? Non-Deliverable Forwards (NDF), G10 currencies
- Futures markets: Offset is possible
 - What? Easy to get out early at a market price
 - How? offset long position by going short, & vice-versa
- 3A+3B: Trading “risk” vs. “commodity”
 - Forwards: trade in the commodity (delivery intent)
 - Futures: trade in the risk (exposure to price movements)

Futures vs. Forwards

3C. Risk control
- OTC market
 - “my word is my bond”
 - theory vs. practice (credit lines; changes since 2008)
 - Big regulatory changes after 2010 (Dodd-Frank, EMIR)
- futures markets
 - clearing house & position limits
 - margin requirements
 - opportunity cost; cash vs. T-bills
 - marking to market

Risk Control through Clearing House
- What?
 - Futures
 - exchange-run (exception: CME-CBOT used to share)
 - Options: Options Clearing Corporation (OCC)
 - owned jointly by all U.S. options exchanges
 - 12 options (including BATS) + 4 small futures exchanges
 - http://www.optionsclearing.com/learners/learnerservices/clearinghouses.jsp
- Why?
 - market liquidity vs. knowing counterparts
 - margin posts and margin calls vs. “word is bond”

Risk Control through Clearing Houses 2
- How?
 - effective “buyer” and “seller” of all futures
 - counter-party to all trades
 - guarantees execution
 - “open interest”
 - in practice
 - reversing trades (offsetting)
 - how do deliveries get carried out?
 - risk for the clearing house
 - default
Margins

- Basic Idea → security deposit
- Risk control
 - margins and margin calls
 » for both long and short parties
- Margin determinants
 - volatility of underlying asset
 – Determines extent of potential loss or gain
 - naked position vs. covered position (hedge, arbitrage, or spread)

Futures Marking-to-Market

- What?
 - daily settlement of gains and losses
 - plus “resetting” of all positions
- Why?
 - risk control
 - hedgers vs. speculators
- How?
 - numerical example
- Consequence (NOT exam material)
 - difference between futures price and forward price

Futures Marking-to-Market 2

- Forward price
 - delivery price
 – price at which the underlying asset will be delivered
 – agreed upon at time forward is entered into
 - forward/futures price
 – delivery price that would make the contract have 0 value
 – changes during life of contract (but, who cares …)
 – Forwards: who cares? Futures: it really matters!
 - forward price = delivery price
 – when contract is created

Futures Marking-to-Market 3

- Futures price
 - delivery price
 – price at which the underlying asset will be “delivered”
 – agreed upon at time futures is bought
 - futures price
 – delivery price that would make the contract have 0 value
 – changes during life of contract (and, it matters)
 - futures price = delivery price
 – when contract is bought

Futures Marking-to-Market 4

- Futures price (cont’d)
 - marking to market
 – replacement of the futures contract at the end of trading
 – every day (at least)
 – by a new contract with new delivery price
 » delivery date unchanged
 » new delivery price = futures price at close

Futures Marking-to-Market 5

<table>
<thead>
<tr>
<th>Date</th>
<th>futures price ($)</th>
<th>margin requirement</th>
<th>cash-flow ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-15-05</td>
<td>0.75 5/8%</td>
<td>$2,150 (a)</td>
<td>- $2,150 (b)</td>
</tr>
<tr>
<td>(Close)</td>
<td></td>
<td></td>
<td>(c)</td>
</tr>
<tr>
<td>09-15-05</td>
<td>0.755 5/8%</td>
<td>+ $625 (d)</td>
<td></td>
</tr>
<tr>
<td>(Close)</td>
<td></td>
<td></td>
<td>(e)</td>
</tr>
<tr>
<td>09-16-05</td>
<td>0.752 5/8%</td>
<td>(f)</td>
<td></td>
</tr>
<tr>
<td>(Close)</td>
<td></td>
<td></td>
<td>(g)</td>
</tr>
<tr>
<td>09-19-05</td>
<td>0.74 5/8%</td>
<td>- $375 (f)</td>
<td></td>
</tr>
<tr>
<td>(Close)</td>
<td></td>
<td></td>
<td>(h)</td>
</tr>
<tr>
<td>09-21-05</td>
<td>0.74 5/8%</td>
<td>+ $1,500 (g)</td>
<td>- $92,500 (h)</td>
</tr>
<tr>
<td>(Close)</td>
<td></td>
<td></td>
<td>(i)</td>
</tr>
<tr>
<td>09-21-05</td>
<td>0.74 5/8%</td>
<td>+SF 125,000 (i)</td>
<td>- $93,750 (i)</td>
</tr>
<tr>
<td>(Close)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Futures Marking-to-Market 6

- Differences b/ forward & futures prices
 - in theory
 - interest rates known
 - stochastic interest rates
 - interest rate vs. futures price (or price of underlying asset)
 » positive correlation: futures price > forward price
 » negative correlation: futures price < forward price
 - in practice / arbitrage

Index Futures

- Stock-market indices
 - basic idea
 - various types
- Stock Index Futures
 - basic idea
 - US vs. other countries
 - index futures as investment tools
 » domestic example (alternative to cash purchases)
 » indirect international diversification tool

Stock Market Indices

- Idea
 - measure of overall performance
- Examples
 - arithmetic: price-weighted (DJI)
 - stock choice
 - arithmetic: market-value weighted (S&P 500)
 - market value of equity, broader, NYSE+NASDAQ
 - geometric: Value-Line
 - downward bias (relative to return on eq.-weighted portf.)

Market Indices: DJIA (NOT Exam Material)

- Computation
 - price-weighted
 - splits, stock dividends > 10% (BK4M4 Tables 2.3 & 2.4)
- Divisor example
 - Time
 - DJI (no split) \(\frac{25 + 100}{2} \) \(\frac{30 + 90}{2} \) -4%
 - DJI (split, d=2) \(\frac{25 + 100}{2} \) \(\frac{30 + 45}{2} \) -40%
 - DJI (split, d=75/62.5) \(\frac{25 + 50}{1.2} \) \(\frac{30 + 45}{1.2} \) 0%

Market Indices: S&P 500 (NOT Exam Material)

- Computation
 - value-weighted
 - No need to adjust for splits or stock dividends
- Example
 - Time
 - DJI (no split) \(\frac{25 + 100}{2} \) \(\frac{30 + 90}{2} \) -4%
 - S&P (no split) \(\frac{100 + 200}{100} \) \(\frac{200 + 100}{100} \) \(\frac{30 + 90}{2} \) +15%
 - S&P (split) \(\frac{100 + 200}{500 + 100} \) \(\frac{200 + 100}{500 + 100} \) \(\frac{30 + 90}{500 + 100} \) +15%

Interpreting Stock Market Indices

- DJI
 - price-weighted
 - gives return on portfolio with 1 share of each stock
- S&P 500
 - market-value-weighted
 - gives return on “market” portfolio (use for index funds)
- Value-Line
 - Not representative of the return on any portfolio
Other Relevant Market Indices

• Equally-weighted indices
 • same dollar weight on each stock
 • need to rebalance

• Foreign indices (http://finance.yahoo.com/intlindices)
 – FTSE ("Footsie")
 • Value-weighted
 – Nikkei
 • 225: price-weighted; 300: value-weighted
 – DAX, CAC-40, TSE-300 Composite, etc.

Stock Index Futures

• Idea
 • cash-settled futures contract ($nbr \times index value)
 • reduces transactions costs

• Types
 • US: DJIA 30, S&P 500, Kansas City Value Line, NYSE, …

• Why Popular
 • allows construction of cheap synthetic stock positions
 • usefulness for international portfolio diversification
 • allows hedging and arbitrage

Stock Index Futures 2

• Some specific items (microstructure)
 – Cash or actual delivery?
 – example: S&P-500 on the CME
 » short position: gives $250 \times S_t (value of index at maturity)
 » long position: gives $250 \times F_{t,T} (delivery price)
 » if F_{t,T} < S_t, then short owes $250(S_t - F_{t,T}) to long
 – “mini” index: CME’s mini
 » S&P500 mini ($50 vs. $250; 1pt = 50c vs. $2.50 per contract)
 » Nasdaq-100 ($20 vs. $100; 1pt = 20c vs. $1 per contract)
 – foreign index futures traded in the United States
 » settlement is only in U.S. dollar
 » 2 sources of risk: FX & basis ("quantos")
 » usefulness in practice: Jorion & al. (JPM 1993)

Stock Index Futures 3

• Synthetic stock positions
 • Idea
 – apply future-spot parity
 – investor can
 » buy shares of all stocks in the index (practical? ETFs)
 » or
 » go long index futures and buy T-bills to cover settlement
 • If you wish to speculate & are
 » bullish: hold long futures position, buy T-bills
 » bearish: opposite

Stock Index Futures 4

• Synthetic stock positions (continued)
 • example
 » TSE-35 is 300 for spot and 303 for 3-month
 » multiplier is $100
 » 3-month interest rate = 1% (annualized = 4%)
 » investor wants to invest $30m in Canadian market for 3 months

 ➔ Go long TSE futures & buy $30 mil. worth of T-bills
 or
 ➔ Go long TSE-35 for 3 months & buy $30 mil. worth of T-bills

Stock Index Futures 5

• Synthetic stock positions (continued)
 • example: returns from both approaches?

 ➔ Go long futures & buy $30 mil. worth of T-bills
 ➔ $30m in T-bills at 1% will be worth $30.3m in 3 months
 ➔ contract price = 303, multiplier = $100
 ➔ so, go long $30,300,000(100x$100) = 1,000 contracts
 ➔ in 3 months, you pocket: $(S_T - 303) \times $100,000 (why S_T?)
 ➔ plus you get your return on T-bills: $30,300,000
 ➔ Portfolio worth at T: $(S_T - 303) \times $100,000 + $30,300,000
Stock Index Futures 6

- Synthetic stock positions (continued)
 - example: returns from both approaches?
 - Buy $30 mil in stocks making up the TSE-35
 - $30m in TSE-35 contract price = 300, multiplier = $100
 - so, buy spot $30,000,000 (300x$100) = 1,000 “contracts”
 (in practice? TSE makes spot contracts available)
 - in 3 months, you have a portfolio worth:
 \[S_T \times 100,000 \]

Stock Index Futures 7

- Synthetic stock positions (continued) – what if multiplier were $500?
 - TSE-35 is 300 for spot and 303 for 3-month hence
 - 3-month interest rate = 1%
 - investor wants to invest $30m in Canadian mkt for 3 months
 - go long 200 contracts: 200 x 500 (multiplier) x 300
 - buy T-bills to cover payment of futures price
 - 200 x 500 x 303 / (1+1%) = $30m
 - at maturity: net worth = 200 x 500 x S_T
 - 200 x 500 x ($S_T - F_0$) = 100,000 $S_T -$30.3m
 - $30m(1.01) = $30.3m

Stock Index Futures 8

- Synthetic stock positions
 - example (continued) – did we forget anything?
 - Dividends...

- \[F = S (1 + r - d) \] (Assume delivery in 1 yr.)
 - if S = 1,000, r = 4%, d = 2%
 - Equilibrium \[F = 1000 \times (1 + 0.04 - 0.02) = 1020 \]

Stock Index Futures 9

- Index futures in practice: Investing Abroad
 - idea: minimize transactions costs
 - risks:
 - basic risk
 - FX risk? (quantos)
 - arbitrage?
 - example

Stock Index Futures: “Arb”

- Index futures in practice: Index arbitrage
 - idea: exploit deviations from parity
 - Triple (now “quadruple”) witching hour
 - 4 Fridays per year
 - index futures + index option + some ind’l stock options
 - all expire at same time
 - exception (S&P 500)
 - volatility
 - supposedly increases (program trading)
 - fundamentals vs. market depth
 - price levels vs. arbitraging price differences

Stock Index Futures: “Arb” 2

- Index futures in practice: Index arbitrage
 - \[F = S (1 + r - d) \]
 - You are a money market fund manager & observe
 - 3 months before S&P 500 futures settlement: \[F = 1030 \]
 - \[S = 1000, r = 4\%, d = 2\% \] but \[F = 1030 \]
 - a spot 3-month T-bill earns 4% per annum or 1% per qtr.
 - a synthetic T-bill earns __?
 - When to enter & what effect on markets
 - convergence will mean that you will earn…. by…..
 - exiting (“sell on close” or exit early?)
Stock Index Futures: Hedging

- Some specific items
 - Basis risk
 - basis = futures price - spot price
 - convergence property
 » do futures price = spot price at maturity?
 » “Yes” for own hedges
 Caveat: compare apples to apples (embedded options?)
 » “Maybe” for cross hedges

Stock Index Futures: Hedging 2

- Hedging stock portfolios
 - ratios to hedge
 - Q1. When would a 1:1 ratio work?
 - Q2. Should you hedge unsystematic risk (individual stock, industry fund) with Stock Index Futures?
 - Hedge Ratios → Use betas or regression
 » Betas: HR = (Portfolio B)/(Stock Index B)
 » Regression: \[S = a + HR \times F + e \]