Derivatives & Risk Management

- Previous lecture set:
 - Futures vs. forwards
 - Stock Index Futures

- This lecture set – Part III
 - Interest-Rate Derivatives
 - FRAs
 - T-bills futures & Euro$ Futures

Part III:
Interest Rate Derivatives

Derivatives “of Interest”

- Interest-Rate Derivatives
 - Contracts on short-term interest rates
 - FRAs, Eurodollar futures (also, T-bills futures)
 - (Single-currency) Interest-rate (IR) Swaps
 - Futures on long-term interest rates
 - e.g., T-bonds & T-notes futures, Bund futures

- Currency derivatives
 - Forwards and futures on FX; FX swaps
 - Currency swaps (= cross-currency interest-rate swaps)

- Relative importance: ISDA + BIS figures

Forward Interest Rates & FRA’s

- Background
 - bond pricing
 - term structure of interest rates & pure yield curve
 - forward interest rate (aka implied forward short rate)

- Forward rate agreements
 - market microstructure
 - locking in rates with FRA’s

Bond Pricing

- Equation for a coupon bond:
 \[P = \text{PV(annuity)} + \text{PV(final payment)} \]
 \[= \sum_{i=1}^{T} \frac{\text{coupon}}{(1+y)^i} \cdot \frac{\text{Par}}{(1+y)} \]

 - Terminology: \(T \) = maturity; \(y \) = yield to maturity

- Example: \(C_i = \$40; \text{Par} = \$1,000; \text{disc. rate} = 4%; T=60 \)
 \[P = \sum_{i=1}^{60} \frac{\$40}{(1+0.04)^i} + \frac{\$1,000}{(1+0.04)^{60}} = \$994.94 + \$95.06 = \$1,000 \]

Bond Pricing 2

- Equation for a zero-coupon bond:
 \[P = \text{PV (final payment)} \]
 \[= \frac{\text{Par}}{1+y} \]

 - Terminology: \(y \) = T-year spot rate

- Example: \(C_i = \$0; \text{Par} = \$1,000; \text{disc. rate} = 4%; T=60 \)
 \[P = \frac{\$1,000}{(1+0.04)^{60}} = \$95.06 \]
Bond Pricing 3

- Why focus on zeroes?
 - The *ytm* of coupon bonds is an average of the spot rates of each of the cash flows (idea: reinvestment)
 \[P = \frac{\sum_{i=1}^{n} \text{Coupon}_i}{\sum_{i=1}^{n} (1+y_{tm})^i} \]
 \[\text{Par} = \frac{\sum_{i=1}^{n} \text{Coupon}_i}{\sum_{i=1}^{n} (1+y_{tm})^i} \]
 - The *ytm* of zeroes (i.e., the spot rate) is not corrupted by these reinvestment issues

Term Structure of Interest Rates

- Basic question
 - link between spot rates (= *ytm* on zeroes) & maturity

- Bootstrapping short rates from strips
 - forward rates and expected future short rates

- Interpreting the term structure
 - does the term structure contain information?
 - certainty vs. uncertainty

- Recovering short rates from coupon bonds

“Term”inology

- Term structure = yield curve
 - = plot of the *ytm* as a function of bond maturity
 - Pure yield curve (special case)
 - = plot of the spot rate by time-to-maturity

- Short rate vs. spot rate
 - both are “zero rates”
 - 1-period rate vs. multi-period yield (BKM4 Fig. 14.3)
 - spot rate = current rate appropriate to discount a cash-flow of a given maturity

Extracting Info re: Short Interest Rates

- From zeroes
 - non-linear regression analysis
 - bootstrapping

- From coupon bonds (NOT Exam Material)
 - system of equations
 - regression analysis (no measurement errors)

- Certainty vs. uncertainty
 - forward rate vs. expected future (spot) short rate

(Implied) Forward Interest Rates

- Definition #1
 - forward interest rate for a given period in the future
 - = interest rate implied by current spot rates

- Definition #2
 - “break-even rate” that equates the payoffs of roll-over and LT strategies

Bootstrapping Fwd Rates from Zeroes

- Forward rate
 - “break-even rate” equating the payoffs of ST roll-over vs. LT strategies
 \[n \times y_n = (n-1) \times y_{n-1} + 1 \times f_n \]

- Intuitive formula
 - \[f_1 = y_1 \]
 - \[f_n = n \times y_n - (n-1) \times y_{n+1} \]
Bootstrapping Fwd Rates from Zeroes 2

- **Forward rate**
 - "break-even rate"
 - equating the payoffs of ST roll-over vs. LT strategies
 - \(n \) years @ \(y_n \) vs. \((n-1)\) years @ \(y_{n-1} \) plus one year at \(f_n \)
 - \((1+y_n)^n = (1+y_{n-1})^{n-1}(1+f_n)\)

- **Precise formula**
 - \(f_1 = y_1 \) and \(f_n = \frac{(1+YTM_n)^n}{(1+YTM_{n-1})^{n-1}} - 1 \)

Bootstrapping Fwd Rates from Zeroes 3

- **Example 1:**
 - BKM4 Table 14.2 & Fig.14.1; BKM9 T15.1 & Fig.15.3
 - 4 bonds, all zeroes (reimbursable at par of $1,000)

<table>
<thead>
<tr>
<th>(T) (maturity)</th>
<th>Price</th>
<th>YTM (spot rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$925.93</td>
<td>8%</td>
</tr>
<tr>
<td>2</td>
<td>$841.75</td>
<td>8.995%</td>
</tr>
<tr>
<td>3</td>
<td>$758.33</td>
<td>9.66%</td>
</tr>
<tr>
<td>4</td>
<td>$683.18</td>
<td>9.993%</td>
</tr>
</tbody>
</table>

Bootstrapping Fwd Rates from Zeroes 4

- **Forward interest rate for year 1**
 - $925.93 = \frac{$1,000}{(1+f_1)} \Rightarrow f_1 = y_1 = 8%$

- **Forward interest rate for year 2**
 - $841.75 = \frac{$1,000}{(1+f_1)(1+f_2)} = \frac{\frac{$1,000}{(1+y_1)(1+f_1)}}{(1+y_1)} = \frac{$925.93}{(1+y_1)}$

 $841.75 = \frac{$925.93}{(1+y_1)} \Rightarrow f_2 = 10%$

Bootstrapping Fwd Rates from Zeroes 5

- **Example 2:**
 - Intuitive ("quick & dirty") forward rates

<table>
<thead>
<tr>
<th>Zero-Coupon Rates</th>
<th>Bond Maturity</th>
<th>(1yr) Fwd Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1) = 12.00%</td>
<td>1</td>
<td>(f_1 = y_1 = 12%)</td>
</tr>
<tr>
<td>(y_2) = 11.75%</td>
<td>2</td>
<td>(f_2 = 11.5%)</td>
</tr>
<tr>
<td>(y_3) = 11.25%</td>
<td>3</td>
<td>(f_3 = 10.25%)</td>
</tr>
<tr>
<td>(y_4) = 10.00%</td>
<td>4</td>
<td>(f_4 = 6.25%)</td>
</tr>
<tr>
<td>(y_5) = 9.25%</td>
<td>5</td>
<td>(f_5 = 6.25%)</td>
</tr>
</tbody>
</table>

* If computed exactly, \(f_3 = 10.26% \); \(f_4 = 6.33% \); \(f_5 = 6.30% \) (we’ll show this below)

- **Example 2:**
 - General Formula

 \(f_n = YTM_n \)

 \(1 + f_n = \frac{(1+YTM_n)^n}{(1+YTM_{n-1})^{n-1}} \)

Bootstrapping Fwd Rates from Zeroes 6

- **Example 2:**
 - "Formal" forward rates

<table>
<thead>
<tr>
<th>Zero-Coupon Rates</th>
<th>Bond Maturity</th>
<th>(1yr) Fwd Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1) = 12.00%</td>
<td>1</td>
<td>(f_1 = y_1 = 12%)</td>
</tr>
<tr>
<td>(y_2) = 11.75%</td>
<td>2</td>
<td>(f_2 = 11.5%)</td>
</tr>
<tr>
<td>(y_3) = 11.25%</td>
<td>3</td>
<td>(f_3 = 10.26%)</td>
</tr>
<tr>
<td>(y_4) = 10.00%</td>
<td>4</td>
<td>(f_4 = 6.33%)</td>
</tr>
<tr>
<td>(y_5) = 9.25%</td>
<td>5</td>
<td>(f_5 = 6.30%)</td>
</tr>
</tbody>
</table>

* If computed quickly, \(f_3 = 10.25% \); \(f_4 = 6.25% \); \(f_5 = 6.25% \)

* If computed exactly, \(f_3 = 10.26% \); \(f_4 = 6.33% \); \(f_5 = 6.30% \) (we’ll show this below)
Fwd Rate & Expected Future Short Rate

• **Q:** Does IFR equal expected short? (is $f_t = r_t$?)
• **A:** Interpreting the yield curve under uncertainty
 – Short perspective (often observed \rightarrow exam material)
 – liquidity preference theory (investors)
 – liquidity premium theory (issuer)
 – **Others: NOT Exam Material**
 • Expectations hypothesis
 • Long perspective
 • Market Segmentation vs. Preferred Habitat

Fwd Rate & Exp. Future Short Rate 2

• **Short perspective**
 • liquidity preference theory (“short” investors)
 – investors need to be induced to buy LT securities
 • liquidity premium theory (issuer)
 – issuers prefer to lock in interest rates
 • $f_t \geq E[r_t]$ (or risk) premium

Fwd Rate & Exp. Future Short Rate 3

• **Long perspective (NOT Exam Material)**
 • “long investors” wish to lock in rates
 – roll over a 1-year zero at 8%
 – or lock in via a 2-year zero at 8.995%
 • $E[r_2] \geq f_2$
 • $f_2 = E[r_2]$ - liquidity (or risk) “premium”

Fwd Rate & Exp. Future Short Rate 4

• **Expectation Hypothesis (NOT Exam Material)**
 • risk premium = 0 and $E[r_2] = f_2$
 • idea: “arbitrage”
• Market segmentation theory (NOT Exam Material)
 • idea: clienteles
 – ST and LT bonds are not substitutes
 • reasonable?
• Preferred Habitat Theory (NOT Exam Material)
 • investors do prefer some maturities
 • temptations exist

Fwd Rate & Exp. Future Short Rate 5

• In practice
 • liquidity preference + preferred habitat
 – hypotheses have the edge
• Example 2 (continued)

Fwd Rate & Exp. Future Short Rate 6

• **Example 2:** “Quick & dirty” forward rates
 • Zero-Coupon Rates | Bond Maturity | (1yr) Fwd Rate
 • $y_1 = 12.00\%$ | 1 | $f_1 = y_1 = 12\%$
 • $y_2 = 11.75\%$ | 2 | $f_2 = 11.5\%$
 • $y_3 = 11.25\%$ | 3 | $f_3 = 10.25\%$
 • $y_4 = 10.00\%$ | 4 | $f_4 = 6.25\%$*
 • $y_5 = 9.25\%$ | 5 | $f_5 = 6.25\%$*

* If computed exactly, $f_3 \approx 10.26%; f_4 \approx 6.33%; f_5 \approx 6.30\%$ (we’ll show this below)
Fwd Rate & Exp. Future Short Rate 7

• Example 2: “Quick” expected future short rates

<table>
<thead>
<tr>
<th>Period</th>
<th>(1yr) Fwd Rate</th>
<th>Expected short rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$f_1 = y_1 = 12%$</td>
<td>N.A.</td>
</tr>
<tr>
<td>2</td>
<td>$f_2 = 11.5%$</td>
<td>$E(y_1') = r_2 = 11%$</td>
</tr>
<tr>
<td>3</td>
<td>$f_3 = 10.25%$</td>
<td>$E(y_1''') = r_3 = 9.75%$</td>
</tr>
<tr>
<td>4</td>
<td>$f_4 = 6.25%$</td>
<td>$E(y_1''''') = r_4 = 5.75%$</td>
</tr>
<tr>
<td>5</td>
<td>$f_5 = 6.25%$</td>
<td>$E(y_1''''''') = r_5 = 5.75%$</td>
</tr>
</tbody>
</table>

* Assumes a constant 0.5% per year liquidity premium

Fwd Rate & Exp. Future Short Rate 8

• LT rates aggregate exp’d short rates + LP

• Example 3:

• short term rates: $r_1 = r_2 = r_3 = 10\%$

 • liquidity premium = constant 1% per year

 $y_1 = r_1 = 10\%$

 $y_2 = \sqrt{(1 + r_1)(1 + y_1)} - 1 = \sqrt{(1 + 10\%)(1 + 10\%)} - 1 = 10.5\%$

 $y_3 = \sqrt{(1 + r_2)(1 + y_2)} - 1 = \sqrt{(1 + 10\%)(1 + 11\%)} - 1 = 10.67\%$

Measurement: Zeroes vs. Coupon Bonds

• Zeros
 • ideal
 • lack of data may exist (need zeroes for all maturities)

• Coupon Bonds (Next 4 pages NOT Exam Material)
 • plentiful
 • coupons and their reinvestment
 » low coupon rate vs. high coupon rate
 » short term rates → they may have different YTM

Measurements with Coupon Bonds

• Example

 • short rates are 8% & 11% for years 1 & 2; certainty
 • 2-year bonds; Par = $1,000; coupon = 3% or 12%

 • Bond 1:

 \[
 \frac{\$30}{1 + 8\%} + \frac{\$1030}{(1 + 8\%)(1 + 11\%)} = \$894.78 \Rightarrow YTM = 8.98\%
 \]

 • Bond 2:

 \[
 \frac{\$120}{1 + 8\%} + \frac{\$1120}{(1 + 8\%)(1 + 11\%)} = \$1,053.87 \Rightarrow YTM = 8.94\%
 \]

Measurements with Coupon Bonds 2

• Example

 • 2-year bonds; Par = $1,000; coupon = 3% or 12%
 • Prices: $894.78 (coupon = 3%); $1,053.87 (coupon = 12%)
 • Year-1 and Year-2 short rates

 $894.78 = d_1 \times 30 + d_2 \times 1,030$
 $1,053.87 = d_1 \times 1,120 + d_2 \times 1,120$
 • Solve the system: $d_2 = 0.8417, d_1 = 0.9259$
 • Conclude ...

Measurements with Coupon Bonds 3

• Example (continued)

 \[
 r_1 = \frac{1}{d_1} - 1 = \frac{1}{0.9259} - 1 \Rightarrow r_1 = 8\%
 \]

 \[
 r_2 = \frac{1}{(1 + r_1)xd_2} - 1 = \frac{1}{(1 + 8\%)(0.8417)} - 1 \Rightarrow r_2 = 10\%
 \]
Measurements with Coupon Bonds 4

• Practical problems
 • pricing errors
 • taxes
 » are investors homogenous?
 • investors can sell bonds prior to maturity
 • bonds can be called, put or converted
 • prices quotes can be stale
 » market liquidity

• Estimation
 • statistical approach

Forward Rate Agreements

• What
 • contracts between 2 parties
 to lock in forward interest rates

• How?
 • cash-settled contract
 » payment = interest cost change
 » on a nominal (or notional) sum of money
 » if interest rate at that time ≠ agreed-upon interest rate
 • seller pays the buyer if interest rate goes up
 • buyer pays the seller if interest rate goes down

Forward Rate Agreements 2

• Amount to be paid
 amount paid by the FRA seller = (nominal amount of contract) x \((S-A) \times \frac{\text{# days the FRA runs}}{\text{# days in the year}} \)

• Hedger
 • By selling an FRA, can lock in interest on deposit
 • By buying an FRA, can lock in cost of loan

• Example (Handout & PS#3)
 • finding quotes & valuing FRA’s
 • Trading FRAs (arbitraging vs. return maximization)

Interest-Rate Derivatives (Recap. slide)

• Forward rate agreements (FRA)
 • OTC contract; users "lock in" implied forward rate

• Interest Rate Futures (IRF): ED & T-Bill Futures
 • exchange traded futures contracts
 • underlying: 90-day interest rate (contrast with FRA)

• Interest-rate Swaps
 • OTC contract; converts exposure: fixed <-> floating
 • Bundle of "time against time + 6 months" FRA’s

• Government bonds futures
 • Exchange-traded futures on a long-term government bond

T-Bill & Eurodollar Futures

• Money-market instruments
 • zero-coupon bonds
 • quotes vs. actual yields

• vs. Long-term bonds
 • quotes
 » T-notes and T-bonds
 » corporate bonds
 • accrued interest

Short-term Bond Prices & Yield Quotes

• T-bills
 • sold at discount to par (typ. $10,000; minimum is $1,000)
 » "capital gain" treated as interest; federal tax only
 • primary market: U.S. Treasury auctions
 » weekly (Mondays; maturity = mostly 91 or 182 days)
 » formerly: every trimester (52 weeks)
 • secondary market

• Other short-term instruments
 • same conventions for quotes (similar idea for futures)
Short-term Bond Prices & Yield Quotes 2

- **Yields on T-Bills**
 - **Bank discount yield:** \(\frac{\text{Par} - \text{Price}}{\text{Par}} \times \frac{360}{n} \)
 - used for futures
 - **Bond equivalent yield:** \(\frac{\text{Par} - \text{Price}}{\text{Price}} \times \frac{365}{n} \)
 - **Effective annual yield:** \(\frac{\text{Par}}{\text{Price}}^{\frac{365}{n}} - 1 \)

Short-term Bond Prices & Yield Quotes 3

- **BDY example**
 - A 60-day T-bill has a BDY of 6.81% *(based on ask)*
 - in the newspaper, the bill would be quoted at
 \[100(1 - 0.0681/6) = 98.865 \]
 - the bill’s ask price would be
 \[10,000 \times [100\% - (6.81\% / 6)] = 9,886.50 \]
 - the bill’s effective annual yield would be
 \[\text{EAY} = (10,000 / 9,886.50)^{(365/60)} - 1 = 7.19\% \]

Eurodollar Futures

- **What?**
 - futures contract on 3-month, $1m eurodeposit
 - underlying = hypothetical deposit "made" at LIBOR, starting 3rd Wed. of delivery month
 - traded on CME/SIMEX, cash-settled
 - maturities up to 10 years *into the future*

- **Our discussion**
 - market microstructure
 - futures rate
 - vs. forward rate
 - pricing: theory, empirics and practice

Eurodollar Futures 2

- **Market microstructure**
 - contracts available
 - long maturities (up to 10 years)
 - M-J-S-D
 - short maturities
 - more months
 - settlement
 - in cash
 - 3rd Wednesday of delivery month *(why?)*
 - last mark-to-market rate is 90-day LIBOR, settlement day
 - underlying variable = 3-month Libor at settlement

Eurodollar Futures 3

- **Pricing example**
 - **Quotes**
 - Z = index value (annualized) futures deposit rate
 - contract value
 \[= 10,000(100 - 0.25\%\text{(1-Z)}) = 1,000,000[1 - 0.25 \times (100-Z)\%] \]
 - Example: June 2003 futures; Z= 95.53
 - annualized futures deposit rate = (100-95.53)\% = 4.47\%
 - contract value = $1,000,000[100 - 0.25 \times (100-95.53)\%] = $988,825
 - 1 b.p. change \(\rightarrow \) $25 change in contract value
 - final marking to market
 - on expiration day, futures price = 100-R
 - R = 90-day Libor (quarterly basis and actual/360 day count)

Eurodollar Futures 4

- **FRA and IRF as hedging tools**
 - **FRA**
 - seller (short) pays *the buyer* if interest rate goes up
 - so: seller locks in the interest return on a deposit
 - i.e.: seller gets fixed rate *(and pays variable rate)*
 - buyer (long) pays *the seller* if interest rate goes down
 - so buyer locks in the cost of a loan
 - i.e.: buyer gets variable rate *(and pays fixed rate)*
 - **IRF**: just the opposite
 - long *("buyer") locks in the interest return on a deposit
 - short *("seller") locks in the cost of a loan
Eurodollar Futures 5

- FRA and IRF as hedging tools (continued)
 - FRA
 - if you want to hedge against rates’ going up, then, buy an FRA
 » buyer locks in cost of loan
 » i.e., hedged buyer pays fixed rate
 - IRF: just the opposite
 - if you want to hedge against rates’ going up, then “keep your shorts on”
 » i.e., sell an IRF

Eurodollar Futures 6

- Futures rate vs. forward rate
 - theory
 - forward rate < futures rate (why?)
 - empirically
 - short maturity
 » not much of a difference
 - long maturity
 » much larger difference
 - practice (---/---)

Eurodollar Futures 7

- Futures rate vs. forward rate
 - (---/---) in practice
 - assume interest rates are continuously compounded
 - forward rate = futures rate - (1/2) \(\sigma^2 t_1 t_2 \)
 - where
 » \(\sigma \) = annual % std deviation of LIBOR
 » \(t_1 \) = contract delivery (in years)
 » \(t_2 \) = end of delivered eurodeposit (in years)
 - numerical example?

T-Bill Futures (NOT Exam Material)

- Basic idea
 - similar to eurodollar futures (size, dates, etc.)
 - Differences:
 - underlying variable = 13-week (3-mo) T-Bill at settlement
 - Tick = ½ point (vs. 1 pt for Eurodollar futures)
 - Not traded since 2003! Only of historical interest
- Quotes
 - \(Z \leftarrow \text{index} \); contract value = $1m \[1 - 0.25(100-Z)\%\]
 - Example:
 - 1.25% T-bill disc. rate for delivery month \(\rightarrow Z=98.75 \)

T-Bill Futures 2

- Market microstructure
 - contracts available at the CME
 - maturities
 » M-J-S-D
 - nominal value: $1 million
 - settlement
 - in cash
 - 3rd Wednesday of delivery month
 - last mark-to-market rate is T-bill rate, settlement day
 » highest discount rate accepted in U.S. Treasury’s 91-day T-bill auction in week of 3rd Wed. of contract month