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Abstract

SOES bandits are investors who use Nasdaq’s Small Order Execution System (SOES) for day
trading. We develop a model of market making with costly information monitoring and examine
the impact of SOES bandits on spreads and price discovery. Costly monitoring hampers price
competition since dealers can share the monitoring costs and earn profits by matching rather than
undercutting their competitors’ quotes. Bandits tend to counteract this effect and add competitive
pressure. The interaction between these effects determines whether a policy that relaxes the firm
quote rule improves spreads, price discovery, and liquidity. We report empirical evidence consistent
with the prediction that bandits prefer to trade stocks with small spreads, but only weak evidence
supporting the prediction that trading by the bandits lead to wider spreads.

Keywords: Market Making, Monitoring, Bid-Ask Spread, SOES, Nasdagq.



1 Introduction

Nasdaq’s Small Order Execution System (SOES) allows brokerage firms to automatically execute
small orders at the best quotes posted by Nasdaq dealers. Participation in SOES is mandatory
for all dealers, who must post firm quotes for a minimum quantity, fixed by Nasdaq.! Although it
was intended for retail investors, SOES mainly attracted professional day traders (labeled SOES
“bandits” by the dealers). The bandits make money by detecting short-term price trends and
trading before all dealers have incorporated this new information into their quotes.? SOES bandits
and their alleged adverse impact on Nasdaq trading costs, liquidity, and volatility has been the
subject of a long and heated policy debate.?

Harris and Schultz (1998), henceforth HS (1998), show that bandits on average make positive
trading profits, at the expense of dealers. This observation is puzzling since bandits trade on
information that is publicly available and pay commissions on their trades. They suggest (p. 61)

that imperfect monitoring by dealers is a potential explanation:

The existence and profitability of SOES bandits raise new questions about the efficiency
of different market structures. Bandits do not have any more information than the
market makers that they trade against and in many cases they have less information.
But bandits still make money. [...]. We believe the answer is that market makers are
inherently less efficient at price discovery than are bandits. [...] bandits have much
greater incentives to concentrate on what they are doing, to follow stock prices closely,

and to stay in front of their terminals than do market maker employees.

In this paper, we develop a model of market making with costly monitoring and show how
this friction affects price formation. We distinguish between two forms of monitoring: (i) news

monitoring and (ii) quote monitoring. News monitoring entails monitoring the arrival of new

!Nasdaq is currently implementing a new trading system called SuperMontage which includes an updated SOES
system referred to as SuperSoes. SuperSoes also offers automatic execution.

2SOES day traders (bandits) accounted for 83% of SOES share volume as of September 1995, according to the
General Accounting Office 1998 report on “The Effect of SOES on the Nasdaq Market.”

3 A Washington Post article (Hinden (1994)) quotes Joseph Hardiman, president of the National Securities Dealers
Association, saying that “The SOES activists were picking off market makers, who were slow to adjust. The losses
to SOES activists made market makers gun shy, causing them to widen their price spreads.” In testimony before the
House Committee on Commerce in 1998, David Whitcomb argued that “Abolishing SOES would remove the ‘market
discipline’, which keeps market makers on ‘their toes’ and causes prices to rapidly adjust when news occurs.”



information, e.g., public announcements, whereas quote monitoring is limited to monitoring quote
updates. News monitoring requires some effort. In contrast, quote monitoring requires little or no
effort because it can be automated.

In our model, dealers post firm quotes and select how intensively they monitor information
arrival. Dealers never monitor news continuously when monitoring is costly. Thus, monitoring is
imperfect and occasionally quotes do not reflect all public information. These so called stale quotes
provide profit opportunities for the bandits. Bandits monitor news and quote updates with a view
to detect these opportunities and exploit them by trading with dealers before they update their
quotes. In equilibrium, bandits’ expected trading profits are positive. Dealers offset their losses to
the bandits by gains from trading with liquidity traders.

Our main results are:

1. News monitoring by one dealer can generate either a positive or a negative externality for
the other dealers. By monitoring quote updates, a dealer can free ride on the efforts that
his competitors exert to monitor the flow of information. Thus, monitoring give rise to a
positive externality. On the other hand, bandits may discover that some dealers’ quotes are
stale by observing other dealers’ quote updates. This introduces a negative externality of
monitoring. Whether the positive or the negative externality is stronger depends on how

quickly the dealers react to quote updates.

2. These externalities influence the dealers’ bidding behavior. The positive externality induces
dealers to match the best quotes rather than to undercut them. This effect produces multiple
equilibria in which dealers earn strictly positive expected profits. In contrast, the negative
externality generates an equilibrium with very low liquidity in which only one dealer posts

the inside spread and makes zero expected profits.

3. The bandits’ ability to profit from the information in quote updates hinges on the fact that
quotes are firm and order execution is automatic. We show that relaxing the firm quote rule,
e.g., allowing the dealers an option to “back away” from their quotes, can increase (decrease)
spreads and slow down (speed up) price discovery, depending upon which equilibrium is

obtained.



Despite the frequent claims that bandits have an adverse impact on trading costs and liquidity,
there is surprisingly little empirical evidence to support this claim. It is difficult to obtain direct
evidence on this effect since the spread and the level of bandit activity are interdependent. An
increase in the spread triggers the exit of some bandits, whereas an increase in the number of
bandits triggers a widening of the spread. We use our model to disentangle this interdependence
and formulate a two-equation model, which allows us to test whether more bandit activity leads
to wider spreads. Consistent with the predictions of our model, we find, for two different samples,
that a wider spread is associated with less SOES bandit activity. However, only for a sample of the
most active stocks do we find that a higher level of SOES bandit activity is associated with a wider
spread and even in this case the effect is statistically significant only at the 10% level. For a second
sample of less actively traded stocks we cannot reject the null hypothesis that bandit activity has
no effect on the bid-ask spread.

Battalio, Hatch, and Jennings (1997) show that SOES bandits speed up the price discovery
process and are more likely to trade in volatile periods. We obtain theoretical and empirical results
consistent with their findings. HS (1997) report evidence consistent with a reduction in SOES
bandit activity following a reduction in the minimum depth from 1000 to 500 shares. In our model,
a decrease in the mandatory quoted depth causes fewer bandits to enter and thus tightens the
spread. Our empirical results provide strong support for the former prediction but only weak
support for the latter one. We also show theoretically that another effect of a reduction in the
mandatory quoted depth is to slow down price discovery.

Our model is related to Copeland and Galai (1983), who analyze the free-trading option aspect
of fixed quotes. We show how the free-trading option problem arises in equilibrium as a result of
costly monitoring. Kandel and Marx (1999) develop a theoretical model to study whether odd-
eighth avoidance is a rational response by Nasdaq dealers to SOES bandits. In their model the
profit opportunities of the SOES bandits are implicitly assumed to be due to imperfect monitoring
by the dealers. We explicitly model how stale quotes or profit opportunities may arise. Kumar and
Seppi (1994) model how index arbitrageurs learn information from quote updates. In their model
the index arbitrageurs always observe quote updates more quickly than do dealers, which is not the
case in our analysis for the bandits vis-a-vis the dealers.

The rest of the paper is organized as follows. The general features of the model are presented in



Section 2. In Section 3, we analyze monitoring externalities. In Section 4, we derive the equilibrium
spreads. In Section 5, we consider some market design questions. We present testable implications

in Section 6 and empirical results in Section 7. Section 8 concludes. All proofs are in the Appendix.

2 The Model

2.1 Timing, Traders, and Market Structure

There is a single risky asset with a liquidation value, V. At the beginning of the trading period,
the expected liquidation value is vg. There are three types of traders: (i) M > 2 dealers, (ii)) N > 1
bandits, and (iii) liquidity traders. All traders are risk neutral.

A trading round comprises three stages, as illustrated in Figure 1. In the quoting stage, dealers
simultaneously quote their spreads, {S’Z}E{V[ . Dealer ¢’s bid quote is b; = vy — % and his ask quote
is a; = vg + % We denote the inside spread (the smallest posted spread) as S,. The number of
dealers posting the inside spread is denoted Mj. Dealer quotes are firm for up to ) shares, the
minimum quoted depth. In the monitoring stage, after observing the quotes, the dealers and the
bandits choose their monitoring levels. This choice determines the probability that a trader is the
first to discover an innovation in the asset value. In the trading stage, one of the following events
occurs. With probability a < 1, there is an innovation in the asset value. In this case the new asset
value is either vy = vg + & or v; = vy — § with equal probabilities. Conditional on an innovation,
a bandit may buy or sell the asset before dealers update their quotes. With probability (1 — «),
there is no innovation. In this case, with probability 8 > 0, a buy or a sell order is submitted by
a liquidity trader, with equal probabilities. The expected size of the liquidity trader’s order is 0().
With probability (1 — 3), no order is submitted.

Incoming market orders are evenly split among the dealers posting the best quotes. A dealer
trades ‘% shares of a liquidity trader’s order. A bandit places at most L orders of size () and
cannot place more orders than the total quoted depth, M. Hence the total size of a bandit trade
is,

Q°(My) = Min{M,,L}Q = Min{l, L/My} x MyQ. (1)

Each dealer trades QS]E/[]:[”) = Min{l, L/M,}Q shares of a bandit’s order. For conciseness, we denote



the portion of the quoted depth which is exposed to bandits by z*(M,) = Min{l, L/M,}. We refer

to 2°(M,) as the dealer’s participation rates in bandit trades.*

2.2 News Monitoring and Quote Monitoring

Dealers and bandits become aware of new information by directly monitoring the information flow,
an activity that we call news monitoring.? We model news monitoring as follows. Let X;(> 0)
be the monitoring level of dealer i and let ;(> 0) be the monitoring level of bandit j. If new
information arrives, the probability that a trader, say m, is first to observe news is denoted by

Prob(f =m). This probability depends on the monitoring levels as follows

Ai
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Prob(f =1i) = P(\) Vi e M, (2)
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where M and N denote the set of all dealers and all bandits, respectively. Furthermore, we set
P(0) = 0 and P(4+00) = 1. A zero monitoring level corresponds to no monitoring of news at
all. Conversely, an infinite monitoring level corresponds to continuous news monitoring. For any
intermediate level news monitoring is imperfect. The probability that a trader is first to observe an
innovation increases in his own monitoring level and decreases in the aggregate monitoring level.
Monitoring requires effort and the monetary disutility associated with this effort is captured by a

strictly increasing and strictly convez cost function (). We assume that

w) =, (4)

where [ denotes the monitoring level and the parameter ¢ > 0 determines the scale of the monitoring
cost for a given monitoring level.® Bandits and dealers simultaneously choose their monitoring

levels, after observing the inside spread. We denote the vector of the dealers’ monitoring levels by

* Alternatively, z°(M;) and 1/M; can be seen as the probabilities that a dealer receives an order from a bandit or
a liquidity trader, respectively.

*Houtkin (1998) lists events that SOES bandits monitor: announcements of earnings or economic indicators, price
movements in related stocks, and brokerage firms’ upgrades and downgrades of stocks.

SResults are qualitatively similar when dealers and bandits have different ¢ parameters.



A(Sy, Mp) = (M (Sp, Mp), ..., A, (Sp, My)). Dealers posting wider spreads than the inside spread
choose not to monitor, since orders are only routed to the dealers at the inside. Analogously,
v(Sy, My) = (71(Sy, Myp), ..., y~n (S, Mp)) denotes the bandits’ monitoring levels.

Dealers and bandits also monitor quote updates (quote monitoring). Dealers use the information
revealed by quote changes to update their quotes. Bandits use quote updates to detect situations
in which some dealers’ quotes are stale.” We assume that when a dealer is first to update his quote,
there is a probability ® that one bandit reacts to this quote update before the other dealers react.
In this case, each bandit has an equal probability (1/N) of reacting first. With probability (1 — ®),
the other dealers update their quotes before any one of the bandits react. Thus, ® measures the
relative advantage of the bandits in quote monitoring (if ® = 0, dealers always react more quickly
than bandits and vice versa if ® = 1). Quote monitoring is pointless when there is only one dealer
at the inside. Hence, for M, = 1, we set ® = 0.

In practice, traders and dealers invest in software that alerts them to quote updates in different
securities. For this reason, we assume that ® does not depend on the levels of news monitoring.
One likely determinant of this probability, which is not examined here, is the fixed cost of the
trading technology used. Other determinants include rules concerning firm quotes and automatic
quote updates. We discuss these issues in more detail in Section 5.

The optimal course of action for the dealers and the bandits in the trading stage is as follows.
If a dealer is first to observe the new information, he revises his quotes. If his competitors react to
this quote update before the bandits, they revise their quotes as well. If a bandit is first to react
to a quote update or to observe new information, she submits buy (sell) orders when she observes
a good (bad) signal.® Tables 1 and 2 list the payoffs for the dealers and the bandits, for a given

spread and fixed monitoring levels.

2.3 Discussion of the assumptions

The quantity, @), corresponds to the minimum quoted depth in the SOES system. Nasdaq dealers

execute orders at their posted quotes that are larger than the minimum quoted depth. SOES

"Quote revisions are, of course, only noisy signals of a shift in the asset value. However, the logic of the model
applies insofar as quote revisions do contain information.

8We assume that the inside spread is strictly smaller than the size of the revision in the asset’s expected value
conditional on information arrival, i.e., Sy < o. This is always the case in equilibrium.



bandits typically do not take part in these trades since they are negotiated by phone. This slows
down the execution process and dealers can back away from their quote upon realizing that the
counter-party is a bandit (see HS (1997) and Houtkin (1998)). Accordingly, the size of liquidity
trades can be larger than @ (i.e., § > 1). NASD rules prohibit individual bandits from initiating
more than one position (i.e., L = 1) in the same stock within a five minute interval. By varying
L we can study the effects of relaxing this rule. It is worth stressing that variations in L are not
equivalent to variations in §. The reason is that the size of bandits’ trades depend on the total
quoted depth but not the size of liquidity trades. Hence a decrease in the number of dealers at the
inside necessarily enlarges a dealer’s participation rate to liquidity trades but may leave unchanged
his participation rate to bandit trades (if L is large enough).

In some equilibria in our model only one dealer can profitably post the inside spread. In these
equilibria sidelined dealers are exposed only to bandits, since liquidity traders are executed at the
inside quotes. Hence the sidelined dealers widen their spreads to avoid being picked off. In order
to account for this reaction within our static model, we simply assume that orders are only routed
to the dealers posting the inside spread.’ This is in fact the case in SOES.

We assume that bandits unwind their positions at the mid-quote (v1) subsequent to information
arrival. Bandits frequently unload their positions on Selectnet or Instinet and trade within the
quoted bid-ask spread. In fact HS (1998) find that when bandits lay off their positions, they trade
at the spread mid-point or at a more favorable price in 90% of the cases. More generally, we could
assume that bandits pay a fixed fraction 7 of the spread when they close out their positions (as
in Kandel and Marx (1999)). They would then gain (o — (1 4+ 7)5)/2 instead of (o — S)/2 when
they initiate a trade. This just scales up the effect of the spread on bandits’ payoffs and would not
qualitatively affect our results.

Finally, the probability of a liquidity trade after an informational event is assumed to be zero.
This assumption could easily be relaxed. Increasing the probability of a liquidity trade after an
innovation reduces the risk of being picked off for the dealers and is tantamount to a decrease in

the probability of an informational event («).

% Another possibility would be to explicitly model quote revisions. This would make the model much more complex
to analyze without adding insights. In any case, the equilibria we describe are robust to the possibility of quote
revisions in the sense that no dealer would find it optimal to unilaterally revise his quotes if he was offered the
opportunity to do so (before information arrival, of course).



3 Monitoring

We focus on perfect equilibria of the trading game. In a perfect equilibrium, (i) traders’ monitoring
strategies (A*(Sp, M) and v*(Sy, Mp)) form a Nash equilibrium given the outcome of the quoting
stage, and (ii) dealers’ quotes form a Nash equilibrium, given the monitoring strategies. We start

by analyzing the monitoring strategies.

3.1 Monitoring Externalities

In this section, we show that news monitoring by one dealer can generate a positive or a negative
externality for the other dealers. Consider one dealer, say i. There are two ways dealer 4 can be
picked off. In the first case, a bandit reacts first to news. Using Equation (3), this event occurs
with probability

Prob(f e N) = )\A,YTA’YA’ (5)

where Ay = }°; A; and y4 = }_;y; are the aggregate monitoring levels. In the second case, a dealer
(different from dealer i) observes the news and updates his quote, and a bandit is first to react
to the quote update. The probability of this event is ®Prob(f € My\i). Using Equation (2), we

obtain

Prob(f € Mpy\i) = VT

(6)

Let T14(A;, A—i,y) be dealer i’s expected profit for given levels of monitoring, A_; and =, for
the other dealers and the bandits, respectively. Using the payoffs presented in Table 1, we get the

following expression for dealer i’s expected profit:

Oy Ny A—iyy) = —alz®(My)Prob(f € N) + z°(My, — 1)®Prob(f € My\i)] w
60
+[1-a)f] oM, T(N) VM, > 2. (7)

The first term represents dealer 7’s expected loss when he is picked off. The second term corresponds
to dealer ’s expected gain from trading with a liquidity trader. The last term is the monitoring
cost incurred by dealer ¢. The expected loss for dealer i is affected by the monitoring levels chosen

by himself as well as the levels chosen by the other dealers.



Proposition 1. Consider two dealers © and m who are posting the inside spread. There exists a

- (M
cut-off ® = % < 1 such that:

O g(Ai,A—i,7)

1. If ® < ® then news monitoring by dealer m is a positive externality for dealer i, or, .

0.

2. If ® > ® then news monitoring by dealer m is a negative esternality for dealer i, or,

OMg(Ai,A—4,7)

2=t <,

An increase in news monitoring by dealer m increases the probability that this dealer will be
first to observe news. This indirectly benefits dealer 7, since a quote update by dealer m signals to

dealer 7 that his quotes are misaligned. Thus, the increase in news monitoring by dealer m reduces

OProb(feN) < 0).

dealer i’s probability of being picked off through bandits’ news monitoring (that is .

This is the source of the positive externality. However, there is a second effect, since bandits also
monitor quote updates to learn about stale quotes. Accordingly, an increase in news monitoring
by dealer m results in a greater probability of being picked off through bandits’ quote monitoring
for dealer 7 (that is %ﬁwb\i) > (). This creates a negative externality. If dealer i reacts
sufficiently quickly to dealer m’s quote updates (® < ®), the reduction in the picking off risk due

to news monitoring is larger than the increase in the picking off risk due to quote monitoring. If

bandits are relatively quicker (® > ®), the reverse is true.

3.2 Equilibrium in the Monitoring Stage

Dealer i chooses the monitoring level that maximizes his expected profit. Using Equation (7), the

first order condition is

OProb(f € N)
o\

OProb(f € My\i)] (0 = Sp)Q /.
e 2~ ()

—Q :L‘S(Mb) + IL‘S(M() - 1)(1)

>



The terms inside the brackets measure the marginal reduction in the probability of being picked

off due to increased monitoring by dealer i. Using Equations (5) and (6), we rewrite this as'®

alc=$)Q |
2(Aa +74)? [

2*(My)ya +2° (M, — 1)@ Y ,\m] =T (\). (8)
m#i J
Using the payoffs listed in Table 2, we obtain the following expression for the expected profit

of bandit j, Ts(yj, A, v—;),

alc — 8y ) DProb(f € M,
ML (A=) = 205 o = (o) + 2EPMEM) gaiag, 1)) —wiay), o)
where Prob(f € My) = /\A/\‘f’YA is the probability that a dealer is first to observe new information.

The term inside brackets is the expected trade size for a bandit. Bandits exploit stale quotes either
by (i) learning about news first, or (ii) reacting quickly to quote changes. In the first case she
trades Q°(M;) shares whereas in the second case she trades Q°(M;, — 1) shares. Bandit j chooses

the monitoring level that maximizes her expected profit. The first order condition is

aQ* (My) (o — Sy) [(N —
2(Aa +74)? [ N

‘I)’L)Mﬁzvj — 0 (y)). (10)
="

where h(®, L) = @% < 1. A Nash equilibrium of the monitoring stage is a set of monitoring
levels that solve Equations (8) and (10). This equilibrium is symmetric if all the traders of a given

type choose the same monitoring level.
Lemma 1. If there exists a Nash equilibrium in the monitoring stage, it is symmetric.

Let A\* (7*) be the monitoring level chosen by each dealer (bandit) in equilibrium. From Equation
(4), we get that U'(I) = ¢l/2. Using this expression, we rewrite the system of Equations (8) and
(10) characterizing traders’ best responses as

alo —Sp)Q
(MypA* 4+ Nvy*)?

[°(My)N~* + 2 (My, — 1)®(My — 1)A*] = e\, (11)

10Second order conditions for the dealers’ and bandits’ optimization problems are satisfied if S, < ¢, which is the
case in equilibrium.

10



and
aQ®(Mp) (o — Sp) (N —h(®,L)
(Mb>\* + N’}’*)2 N

YMpA* + (N — 1)v*| = ev". (12)
Solving this system of equations yields the equilibrium monitoring levels.

Proposition 2. When M dealers post an inside spread Sy < o, the equilibrium of the monitoring

stage is unique and is characterized by the following monitoring levels for the bandits and the

dealers:
. _( N-h(?,L) aQ® (M) (o — Sp)
* aN Qs (M,)(o — Sp) Ny
A" (S, M) \/cMg(N +1—h(®,L))2  My(N —h(®,L)) (14)
For these monitoring levels, the expected profits of the dealers and the bandits are
. s 1 —a)BoS,
IT5(Sp, M) = % [—Cm (Mp)C (My, @, L) (0 — Sp) + (T)bﬁb] ; (15)
. . N N
with C(My, @ 1) = 5351 T (N £ 1 = h(@. 0))% (16)
. 2N(N +1—h(®,L)) — (N — h(®,L))?
T N) = aQ’(M, — 1
s(Spy N) = aQ*(My) (0 — Sb) [ INN 11— (@, 1)) (17)

The proposition reveals several interesting properties of the monitoring strategies followed by the
traders. Firstly, bandits and dealers always put some effort into news monitoring, i.e., v* > 0
and A* > 0. In particular, it is never optimal for bandits to entirely base their trading strategies

on dealers’ quote updates.!!

Secondly, the monitoring level of both types of traders decreases
with the size of the spread. When the dealers increase their spread, bandits monitor the market
less intensively, since the profit obtained by picking off dealers is lower. The dealers react by

monitoring less.'? The negative term in a dealer’s expected profit is the expected trading loss to

"This result is consistent with HS (1998). They find that contrary to the popular view that bandits only pick off
the very slow dealers, bandits on average trade before most dealers update their quotes.

12Observe also that traders’ monitoring levels decrease with the scale of the monitoring cost, c. In equilibrium,
the adjustment in monitoring levels exactly offsets the increase in ¢ and traders’ monitoring costs are unchanged.
The various probabilities of being picked off are unaffected as well because traders’ relative monitoring levels do not
depend on c. These effects explain why the parameter ¢ does not appear in traders’ equilibrium expected profits.

11



bandits (‘the cost of market-making’). Part of this cost, C(M, ®, L), reflects the joint effect of all
traders’ monitoring decisions on a dealer’s (a) probability of being picked off and (b) monitoring

cost.

Lemma 2. The component of the cost of market-making which is determined by traders’ monitoring

decisions, C(M,®, L), increases with ®.

An increase in the bandits’ relative advantage in quote monitoring implies a greater picking
off risk for the dealers. They react by choosing higher monitoring levels, other things equal. But,
in equilibrium, this is insufficient to fully counter-balance the increase in the risk of being picked
off. Hence an increase in ® results in (a) a larger monitoring cost and (b) a larger risk of being
picked off. Lemma 2 follows. Proposition 2 also holds when only one dealer posts the inside spread
(Mp = 1). In this case & = 0 since quote monitoring is pointless. Hence the function C' takes the

value C'(1,0, L) and we denote it C(1) for simplicity.

4 Spreads and Monitoring Externalities

The results in the previous section are all conditional on a spread. In this section we determine
the set of equilibrium spreads. We show that there are two important determinants of the inside
spread: (1) the probability that bandits react swiftly to quote updates (®), and (2) the number of

orders submitted by a bandit (L).

4.1 The Set of Equilibrium Spreads

Consider a situation in which all dealers (M, = M > 2) post the inside spread S;. This is an
equilibrium spread if no dealer has an incentive (i) to widen his spread or (ii) to improve upon the

inside spread. The first condition requires that dealers do not expect to incur losses, that is

T (S5, M) > 0.

12



Let S (M, ®, L) be the spread such that this equation is binding (the zero profit spread). Using

Equation (15), we get

S(M,®,L) = ao

Maz5(M)C(M,®, L) )

(aM:z:S(M)C(M, D,L) + (1L —a)Bd (18)

In equilibrium, the inside spread must be at least S for the dealers to break even. A dealer does
not improve upon the inside spread if the profit earned by posting the inside spread is at least as

large as the profit he would obtain if he unilaterally undercuts. This requires
AIL(Sy) = Ia(Sy, M) — II5(S5, 1) = 0. (19)

Using Equation (15), we obtain

M -1

ATI(S}) = -

a(o = S5)(C(1) —z*(M)C(M, ®, L)) — Sy ((1 — a)B9) (20)

Q
2
The dealer who undercuts gains a larger share of the order flow from liquidity traders (he executes
the entire order of a liquidity trader instead of a fraction equal to 1/M). This effect encourages
undercutting and is captured by the last term inside the brackets. However, there are two counter-
acting effects that discourage the dealer from undercutting. First, the fraction of the dealer’s depth
at risk increases from z*(M) to 100%. Second, the dealer monitors more. These two effects enlarge
the cost of market making (this is captured by C(1) — z*(M)C(M,®,L)). They are analyzed in

detail in the following sections. For the moment, notice that if

then AII decreases with the spread. Hence the condition AIl > 0 holds when the spread is
sufficiently small. Specifically, let S be the spread such that a dealer is just indifferent between
undercutting or matching the quotes (‘the maximal spread’). The maximal spread solves AII(S) =

0. Hence,

S(M,®, L) = ac (aAC+A(f_ a)ﬁé)’ (22)

13



with
MI[C(1l) —z5(M)C(M, P, L)]

AC(M,®,L) = =T

. (23)

A dealer is better off not improving upon the inside spread when S; < S. We conclude that Sj is
an equilibrium spread if and only if it belongs to [S’ ,S]. The next lemma provides the condition

under which this interval is nonempty.

Lemma 3. There exists an equilibrium with M > 2 dealers posting the inside spread if and only if

S(M,®,L) < §(M,®, L), that is

- < (24)

M
The left-hand side represents the increase in the market share of a dealer who undercuts. The
cost associated with undercutting is captured by the term on the right-hand side of the inequality.
When Inequality (24) is strict, the maximal spread is strictly larger than the zero profit spread
(S > S’) and non-competitive spreads can be sustained in equilibrium. Below we study in detail

the conditions under which this inequality holds.

4.2 The Effect of Monitoring Externalities

We now show how the positive externality associated with news monitoring helps dealers earn
strictly positive expected profits, whereas the negative externality reduces the number of dealers
who post the inside spread. In order to better convey the intuition, we assume in this section that
a bandit can only submit one order of the maximum order size (L = 1). Analysis of the general
case is deferred to Section 4.3. This means that z*(M) = Min{l,L/M} = 1/M. In this case,
Inequality (24) simplifies to

c(l)—C(M,2,1) >0. (25)

For @ = 0, the dealers’” monitoring costs and therefore C'(M,0,1) decrease with the number of
dealers posting the inside spread (see Equation (16)). We refer to this effect as the cost sharing
effect. Intuitively, the number of dealers grows, each dealer can free ride on a larger number of
dealers’ monitoring efforts without facing an increase in the risk of being picked off. This is a result

of the positive externality of monitoring which exists when & is sufficiently small. Accordingly, for
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® = 0, Inequality (25) is always (strictly) satisfied and we obtain the following result.
Proposition 3. In the absence of quote monitoring by the bandits (® =0),

1. All the dealers post the inside spread in equilibrium (no sidelined dealers).

~ —

2. There is a multiplicity of equilibrium spreads: any spread S, € [S(M,0,1),S(M,0,1)] is a
Nash equilibrium. For all the equilibria in which the inside spread is strictly larger than

S’(M, 0,1), the dealers earn strictly positive expected profits.'3

The cost sharing effect deters dealers from improving upon the inside spread and explains why
non-competitive spreads can be sustained. When quote monitoring is possible, ® > 0, there is a
counteracting effect. Instead of simply lowering the monitoring costs, an additional dealer at the
inside spread also increases the number of potential quote updates that bandits can use to learn
about news. This effect (the source of the negative externality) lowers dealers’ incentive to share
monitoring costs. In particular the cost of market making with two dealers may then be larger
than with only one dealer, despite the cost sharing effect. A second dealer at the inside enables
bandits to exploit quote updates. This triggers a jump in the risk of being picked off relative to
the case with one dealer and therefore matching the quotes of a single dealer can be suboptimal.

This is the rationale for equilibria with only one dealer at the inside.

Lemma 4. In the presence of quote monitoring by the bandits (® > 0), we observe that either
(a) all the dealers post the inside spread (My = M) or (b) only one dealer posts the inside spread

(My =1), in equilibrium.

The bandits’ ability to quickly exploit the information contained in quote updates (the value of

®) determines the nature of the equilibrium as shown in the next two propositions.

Proposition 4. There ezists ®*(M,N) € (0,1) such that when 0 < & < ®*(M, N):

1. All the dealers post the inside spread in equilibrium.

~ —

2. There is a multiplicity of equilibrium spreads: any spread Sy € [S(M,®,1),S(M,®,1)] is a

Nash equilibrium. Dealers earn strictly positive expected profit when Sy > S’(M, D, 1).

13%Kandel and Marx (1997) show that multiple equilibrium spreads can arise when prices are discrete. Interestingly,
we obtain a multiplicity of equilibrium spreads even with continuous prices.
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When dealers react sufficiently quickly to quote updates (® < ®*), news monitoring by each
dealer is a positive externality for the other dealers. Thus, the cost sharing effect dominates. For
® > ®* the increased risk of being picked off due to quote monitoring dominates the cost sharing
effect. This is formally stated in the next proposition. We denote the zero profit spread when only

one dealer posts the inside spread by S(1).

Proposition 5. When ®*(M,N) < ® < 1, the Nash equilibrium of the quoting stage is such that

only one dealer (M = 1) posts the inside spread, which is Sy = S(1). The expected profit of the

dealer posting the inside spread is zero.

In order to prevent bandits from exploiting the quote updates, dealers undercut each other until
a single dealer, who breaks even, remains at the inside spread. If another dealer were to match this
inside spread, then the two dealers would incur a loss. This is due to the jump that results in the
probability of being picked off. Consequently, a large relative advantage in quote monitoring for
the bandits may dramatically reduce liquidity (a form of market breakdown).'*

Summarizing this section, we have shown how externalities associated with news monitoring
influence the price formation process. The possibility for dealers to free ride on news monitoring
by other dealers is not conducive to price competition. However news monitoring by several dealers

exacerbates the adverse selection problem when bandits react sufficiently quickly to quote updates.

This leads to a situation in which only one dealer provides liquidity in equilibrium.

4.3 The Effect of Multiple Orders by Bandits

In this section we study the effect of the maximum quantity that bandits are allowed to trade, L.
Recall that a dealer’s participation rate in trades initiated by bandits is
1 if L>M,
2 (M) = (26)
L/M if L< M.
Notice that z®(M) > ﬁ when L > 1 and M > 1. Now consider a dealer who undercuts his
competitors and suppose L > 1. His participation rate in bandits’ trades increases but relatively

less than when L =1, since 1 —2*(M) < 1 —1/M. This makes undercutting more attractive when

"“We thank one of the referees for suggesting this interpretation.
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L > 1 since part of the cost to undercutting (greater exposure to bandits) is smaller than when
L = 1 whereas the benefit (greater share of liquidity trades) is unchanged. This effect decreases
the dealers’ incentives to match the inside spread and non-competitive equilibria are more difficult
to sustain. However, the cost sharing effect that we identified in the previous section still holds. It
remains dominant as long as L is not too large. Hence we can generalize Proposition 4 as shown

below.

Proposition 6. There exists L*(M) > 1 such that for L < L*(M) and ® < &(M, N, L): (i) all
the dealers post the inside spread in equilibrium and (ii) there are multiple equilibrium spreads: any

spread Sy € [S’(M,CP,L), S(M,®,L)] is an equilibrium.

The cut-off @ is the value of ® such that Inequality (24) is binding (i.e., is such that the maximal
spread and the zero profit spread are identical). For values of ® strictly smaller than this cut-off,
the zero profit spread is strictly smaller than the maximal spread and dealers earn rents in equilibria
where Sy > S. In the appendix we show that & decreases with L. It is equal to ®* when L = 1
and it is equal to zero when L = L*(M). Hence allowing bandits to place multiple orders shrinks
the set of values of ® for which dealers can sustain non-competitive spreads. This set is always
empty for L > L*(M). In this case, there is no positive value of ® (and therefore no positive <i>)

such that Inequality (24) is satisfied.

Proposition 7. Suppose that either (a) ® > ®(M,N,L) and L < L*(M) or (b) L > L*(M). Then
the unique equilibrium is such that only one dealer posts the inside spread which is equal to S’(l)

and he earns zero expected profits.

These results generalize Proposition 5. Under the conditions of the proposition, the benefit to
undercutting dominates the cost of undercutting and a zero expected profit equilibrium ensues.
When & > & and L < L*(M), the result obtains because sharing the monitoring costs is no
longer attractive, as explained in the previous section. When L > L*, the result obtains because
the increase in a dealer’s exposure to bandits’ trades is too small to deter undercutting. It is

noteworthy that only one dealer posts the inside spread in equilibrium when L is large.'® This

15T see why, consider a situation in which several dealers post the inside spread and make zero expected profits
and assume L > M so that °(M) = 1. If a dealer slightly undercuts, he captures the whole order flow from liquidity
traders whereas he keeps trading the same number of shares with bandits (since z°(M) = z°(1) = 1). Hence the
dealer earns a strictly positive expected profit if he undercuts and the situation in which several dealers post the
inside spread is not an equilibrium. A similar phenomenon arises in Dennert (1993).
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suggests that unbridled trading by bandits can result in a decline in the total quoted depth. It also
provides a justification for a limit on the number of positions that a bandit can initiate within a
short interval of time. We conclude this section by considering the effect of a change in ® on the

set of equilibrium spreads.

Lemma 5. Suppose L < L*(M) and ® < d. The zero profit spread, S’, increases with ® whereas
the mazimal spread, S, decreases with ®. Furthermore S(M,®,L) = S(M,®,L) = S(1). In the

other cases, the equilibrium spread is S’(l), which does not depend on ®.

An increase in bandits’ relative advantage in quote monitoring increases the cost of market making
(see Lemma 2). This explains why the zero profit spread increases with ®. Dealers gain less in
sharing monitoring costs when ® enlarges and non-competitive spreads are more difficult to sustain.
Thus, an increase in ® tightens the maximal spread.

Figure 2 summarizes the results. When & < $ and L < L*(M), there is a multiplicity of
equilibrium spreads. Two equilibria are of particular interest: (1) the maximal spread equilibrium

(S; = S), which is the preferred equilibrium for a dealer and (2) the zero expected profit equilibrium

(S = S), which is preferred by liquidity traders.

5 Market Design

In this section we analyze some market design issues that are motivated by some actual and proposed
trading rules. We then show how theses policies affect spreads and price discovery in our model.

Nasdaq responded to the dealers’ complaints about the SOES bandits by proposing to replace
SOES with N*prove (1994) and NAqcess (1995). These systems were never approved by the SEC.
One common feature of these trading systems is a delayed execution feature that allows dealers
a short time interval during which they could decline to accept an incoming trade. This feature
relaxes the firm quote requirement and consequently makes it harder for bandits to execute trades.
In particular, trading strategies that rely on quote monitoring are less effective under these rules.
Thus, we can interpret these proposals as a shift of the relative advantage in quote monitoring to
the dealers (a lower @ in the model).

Interestingly, one of the existing trading rules on Nasdaq also affects the dealers ability to up-

date their quotes rapidly. Nasdaq’s Autoquote Policy prohibits software that would automatically
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update one dealer’s quotes as a function of other dealers’ quotes. By forcing a dealer to update his
quotes manually when he receives an alert, this policy increases the time required for him to adjust
his quotes. Thus, allowing auto-quoting can also be interpreted as a shift of the relative advantage
in quote monitoring favoring the dealers.

Hence, we analyze the effects of changing ® in our model. We consider a base case where ®
is positive but small enough, ® < <i>, and 1 < L < L* to avoid a situation with only one dealer
posting the inside spread.'® We refer to our base case as a market design with a firm quote rule.
We then compare this case with a relaxzed quote rule where ® is lower than in the base case, i.e., we
shift the advantage in quote monitoring to the dealers. We take this lower value to be zero (¢ = 0),

without affecting the results.

Corollary 1. When the equilibrium of the quoting stage is the mazimal spread equilibrium (zero

expected profit equilibrium), the inside spread is smaller (larger) under the firm quote rule.

Consider Figure 2. If the dealers post the zero expected profit spread, then the equilibrium
spread is clearly larger when ® > 0. This reflects the fact that the adverse selection risk is larger
when bandits can use the information revealed by quote updates to pick off dealers. However if
the dealers post the maximal spread, the conclusion is reversed: the equilibrium spread is smaller
when ® > 0. Actually a dealer’s incentive to free ride on his competitors’ monitoring is reduced

when bandits can hit dealers who are slow to adjust their quotes. This effect fosters competition.

Corollary 2. The monitoring level chosen by a dealer in equilibrium is always larger under the

firm quote rule, both in the zero expected profit and in the mazimal spread equilibria.

A firm quote rule strengthens the dealers’ incentive to be first to discover new information
because it increases the likelihood that bandits (rather than dealers) benefit from quote updates.

Hence free riding on other dealers’ monitoring becomes risky.!” One implication is that dealers’

'6When only one dealer posts the inside spread, the spread does not depend on &.

1" This effect is present in all equilibria of the quoting stage. A firm quote rule also has an indirect effect on the
dealers’ news monitoring because it affects the equilibrium spread. The direction of the indirect effect depends on
the equilibrium in the quoting stage. In the maximal spread equilibrium, the firm quote rule reduces the spread and
in this way further increases the dealers’ news monitoring. In contrast, in the zero expected profit equilibrium, the
firm quote rule widens the spread and in this way reduces the dealers’ need to monitor. Still, this is insufficient for
their equilibrium monitoring levels to be smaller than in the case of a relaxed quote rule.
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quotes will reflect new information more quickly under the firm quote rule. The speed of price

discovery, however, is determined by the aggregate monitoring level, Ay + v4.'8

Corollary 3. When the equilibrium of the quoting stage is the mazimal spread equilibrium (zero
expected profit equilibrium), the aggregate monitoring level, X% + 4, of all the traders is larger

(smaller) under the firm quote rule.

Thus, a firm quote rule may or may not improve price discovery. On the one hand, it strengthens
the dealers’ incentives to monitor. On the other hand, it weakens the bandits’ incentive to monitor,
since they can use the free information contained in quote updates to pick off dealers. In the zero
expected profit equilibrium, this effect is reinforced by the fact that the spread is larger under the
firm quote rule (the bandits’ monitoring effort decreases with the spread). Thus, in this case the
aggregate monitoring is lower. In the maximal spread equilibrium, the spread is smaller under the
firm quote rule. In this case, the increase in the dealers’ aggregate monitoring level is larger than
the reduction in the bandits’ monitoring level, and price discovery is improved.

To sum up, our analysis provides some support for both the bandits’ and the dealers’ arguments.
If the dealers are playing the maximal spread equilibrium, a policy that makes it easier for the
bandits to pick off stale quotes may both improve price competition and price discovery. This
vindicates the argument that a firm quote requirement provides “market discipline.” On the other
hand, if the dealers are posting the zero profit spread, a policy that enables bandits to pick off stale
quotes would increase the spread and slow down price discovery. This finding supports the dealers’

argument that the firm quote requirement, in presence of bandits, impairs market quality.

6 Testable Implications

A major question in the SOES controversy is whether or not SOES bandits cause dealers to post
wider spreads. Our goal is to study this issue empirically. In this section we develop some com-
parative statics that we use in our empirical analysis. We first consider the impact of an increase

in the number of bandits on the equilibrium spread. When there is a multiplicity of equilibria we

8Tn the model, the probability that one trader will discover an innovation is always equal to one. However, this
can be modified so that this probability is less than one, by adding a constant p in the denominators of Prob(f = 1)
and Prob(f = j). The probability that an innovation will not be discovered is then m. It decreases with
(A4 + v4). Thus, the speed of price discovery increases with the aggregate monitoring level.
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focus on the zero expected profit and the maximal spread equilibrium.

Proposition 8. A larger number of bandits increases the equilibrium spread, ceteris paribus.

The intuition for this result is as follows. In equilibrium, the probability that a bandit submits an

order when two or more dealers post the inside spread is

_ A Ad
o (Prob(f € N) + @Prob(f € M)) = a5~ + 9520

_ (N4 (2 - h(®,L))

_a< N +1—h(®,L) )

(27)

where the last equality follows from Proposition 2. The same expression for this probability with
® = 0 is obtained in equilibria with only one dealer. Thus, an increase in the number of bandits
leads to a higher probability of the dealers being picked off. Proposition 8 yields the following
testable hypothesis.
Hypothesis 1: Stocks with a higher level of bandit activity have wider spreads, ceteris paribus.
Testing Hypothesis 1 is not straightforward because the bandit activity itself depends on the
spread. We need to control for this effect. To this end, we extend the model assuming that each
bandit bears a fixed entry cost, K > 0, that is sunk at the beginning of the trading game. This
fixed cost represents, for instance, the cost of acquiring computer systems for trading. For a given

spread, a bandit’s expected profit (see Proposition 2) net of the fixed cost K is

2N(N +1—h(®,L)) — (N — h(®, L))?
4N(N + 1 — h(®, L))?

II5(Sp, N) = K = aQ®(0 — S) - K (28)

The same expression obtains when a single dealer posts the inside spread, with ® = 0 in this case.
Bandits take the spread as given and enter if their net expected profit is positive. Clearly, the net
expected profit decreases in the number of bandits and is negative when this number is large. The
number of bandits who enter, N*(S), is such that the net expected profit is equal to zero.'® Notice
that an increase in the spread reduces a bandit’s net expected profit, other things equal. Hence N*

decreases with the inside spread.

Proposition 9. A larger spread leads to fewer bandits, everything else equal.

19 An integer solution may not exist. In order to avoid this technical problem, we treat N as a real number, as is
usual in market entry analysis.
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This result gives us our second main prediction.

Hypothesis 2: Stocks with wider spreads have lower levels of bandit activity, ceteris paribus.
Hypotheses 1 and 2 underscore the interdependence between the spread and the number of

bandits. Consequently, we will test Hypotheses 1 and 2 using a simultaneous equations framework

with the spread and the level of bandit activity as endogenous variables. In order to do this we

need to determine how the other model variables (o, Q, M,d) influence the spread and/or SOES

bandit activity.
Corollary 4.

1. For a given number of bandits, an increase in the average size of liquidity trades (0) triggers

a decrease in the spread. An increase in volatility (o) triggers an increase in the spread.

2. For a given spread, an increase in the minimum quoted depth (Q) or an increase in volatility

(o) triggers an increase in the number of bandits.

The above result for the spread is intuitive. The second part of the corollary follows since an
increase in the minimum quoted depth or in the asset volatility raises bandits’ expected profits, all
else being equal. In our empirical analysis, we also use the number of dealers in a stock as a control
variable, but we do not formulate predictions regarding the effect of the number of dealers on the
spread. Actually, the model can not yield clear-cut predictions for the direction of this effect. In

order to illustrate this fact, we consider a special case in the next corollary.

Corollary 5. Suppose that L =1 and that ® < ®*(M,N). In the zero expected profit equilibrium,
the spread decreases with the number of dealers posting the inside spread. In the maximal spread
equilibrium, the spread can increase with the number of dealers posting the inside spread when ® is

large.

Recall that if @ < ®* all the dealers post the inside spread in equilibrium and share the monitoring
costs. It follows that the cost of market making and therefore the zero expected profit spread
decreases with the number of dealers. At the same time, cost sharing makes undercutting less
attractive when the number of dealers is large. Hence an increase in the number of dealers makes
it easier to sustain non-competitive spreads. This explains why, counterintuitively, an increase in

the number of dealers may result in a larger spread in the maximal spread equilibrium.
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For a given spread, a decrease in the minimum quoted depth induces the entry of fewer bandits.
This decline in the number of bandits reduces the risk of being picked off for the dealers and
reduces the spread. Hence a change in @) indirectly affects the spread because it alters the number
of bandits. Notice that the decrease in the spread counter-balances the initial negative impact of
a reduction in () on the number of bandits. However, the next proposition states that despite this

effect, a decrease in the minimum quoted depth reduces the number of bandits in equilibrium.
Proposition 10. Suppose either (a) L =1 and ® < ®*(M,1) or (b) L > M. In equilibrium

1. When the minimum quoted depth is reduced, the number of bandits decreases and the spread

decreases.

2. When the minimum quoted depth is reduced, the aggregate news monitoring (X5 + v%) de-

Creases.

Interestingly, the minimum quoted depth has been reduced several times on Nasdaq. Nasdaq
argued that this reduction would lessen SOES bandit activity and would narrow spreads. The
previous proposition concurs, but it points out that a reduction in the minimum quoted depth
adversely affects price discovery. Actually the reduction in the number of bandits implies that their
aggregate monitoring level decreases. Dealers also choose to monitor less, since the risk of being

picked off is lower. Eventually price discovery is impaired. The last result yields a third prediction.

Hypothesis 3: Stocks with higher minimum quoted depth have (i) larger spreads and higher

levels of bandit activity.

In line with the second part of Hypothesis 3, HS (1997) and Barclay et al. (1999) find a decline
in the number of trades initiated by SOES bandits after the reduction in the minimum quoted
depth in 1994 and 1997, respectively.

Remark. In order to establish the last proposition, we must determine how a change in @Q
affects (a) the spread and the number of dealers posting this spread and (b) the number of bandits,
in equilibrium. This is difficult because a change in the number of bandits can trigger a shift from

an equilibrium in which all the dealers post the inside spread to an equilibrium with a single dealer
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posting the inside spread (the cut-off P depends on N). This creates discontinuities in the bandits’
expected profit function when N varies. The conditions on the parameters guarantee that this
technical problem does not arise. When L = 1 and ® < ®*(M, 1), all the dealers post the inside
spread in equilibrium, independent of the number of bandits. When L > M, a single dealer posts
the inside spread in equilibrium, independent of the number of bandits as well. Notice that the

proposition covers all the possible situations in equilibrium.

7 Empirical Analysis

Armed with the results of the previous section, we are now able to address empirically some of the
key questions in the SOES debate: Does an increase in SOES bandit activity increase the spread? Is

the maximum SOES quantity an effective policy instrument for influencing SOES bandit activity?

7.1 Methodology

We need a proxy for the number of SOES bandits since we do not observe it directly. A natural
measure of their activity is the unconditional probability of observing a trade initiated by a bandit.
In our model, this probability is given by Equation (27) and is strictly increasing in the number of
bandits. The qualitative effects of a change in the exogenous parameters on the number of bandits
and this probability are identical.

But how do we identify trades initiated by bandits? HS (1997) show that SOES trades occurring
in clusters (several maximum-size SOES trades in rapid succession) are very likely to be initiated
by bandits. Accordingly, we use the probability of a SOES cluster as our proxy for the probability
of a trade initiated by a bandit. We define a cluster as an uninterrupted sequence of three SOES
orders of the maximum size, at the same price, within 30 seconds.?’ Our proxy is then defined as
the number of SOES clusters divided by the total number of trades.

We estimate the following system of simultaneous equations for a cross-section of stocks:

soes; = a1 + agspri + azvlty; + agmazq; + € (20)

spri = by + bysoes; + bsvlty; + bandlr; + bsliqd; + €3,

20We considered other possible specifications for the number of orders and the interval of time between orders
within a cluster. Our empirical results are robust with respect to the different specifications.
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where 7 = 1,..., I index the stocks and the variables in the equation system are: the probability
of a SOES cluster (soes), the bid-ask spread (spr), the volatility of the stock returns (vlty), the
maximum quantity that can be traded in SOES (maxq), the number of dealers in the stock (ndlr),
and the average size of liquidity trades (liqd). We define these variables in more detail below.
The first equation determines the probability of observing a SOES cluster as a function of the
bid-ask spread, the volatility of the asset, and the maximum SOES quantity. The second equation
determines the spread as a function of the probability of a SOES cluster, the volatility of the
asset, the number of dealers, and the average size of liquidity trades. Our two main predictions
are that the effect of the spread on the bandit activity is negative, as < 0, and that the effect of
the bandit activity on the spread is positive, by > 0. Corollary 4 provides the expected signs for
the other independent variables. Recall that we can not sign the effect of the number of dealers

unambiguously.

7.2 Data

Our data is provided by Nasdaq and it includes transactions and dealer quotes for December 1996.
In taking the two-equation model to the data we face the following two difficulties. Previous
research and anecdotal evidence suggest that bandit activity is very heavily concentrated in the
large and active stocks whereas many less actively traded stocks have very little or no bandit
activity. Provided there is enough variation in the key instruments, i.e., the maximum SOES size
and the number of dealers, we could estimate Equation (29) for a cross-section of actively traded
stocks. The problem is that the rules for assigning the maximum SOES size imply that there is
little or no variation in the maximum SOES size for a sample that is restricted to the very active
stocks.?! In order to address this problem we select a larger number of stocks than previous studies.
The second challenge is that our dependent variable is defined as the ratio of the number of SOES
cluster to the total number of trades. The normalization by the number of trades is important
since we do not have any model predictions for the total number of clusters, but obviously our

primary interest is in explaining variation numerator of this proxy rather than the denominator.

21The maximum SOES order size is determined by the trading characteristics of the security. Requirements for
a 1000 share maximum size include a non-block trading volume of 3000 shares or more per day and three or more
market makers. Additional rules require that all IPOs, irrespective of market capitalization and trading volume,
trade with a 200 share maximum size for a minimum of 45 trading days. In addition, a security can only move one
size category per review.
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To control for this problem and to check the robustness of the results obtained for the first sample
we construct a second sample. There is not much overlap between the two samples—only about 8%
of the stocks in the first sample are included in the second sample.

The selection criteria used for the first sample is trading volume. Using a cut-off of four million
shares for the monthly trading volume and a minimum average price of five dollars we obtain
a sample of 310 stocks. Our sample includes many of the stocks that are frequently mentioned
as favorites among the bandits, but also other active stocks with little or no bandit activity as
measured by our proxy (see Table 3).

We construct a second sample using the following selection criteria. We rank all NASDAQ
stocks with a price above three dollars by the number of trades in December 1996. We select the
top one hundred stocks with a maximum SOES size of 500. These stocks are then matched with
stocks with a maximum SOES size of 1000 using number of trades as the matching criteria. By
selecting a fixed number of stocks with a smaller SOES size we get large variation in the maximum
SOES size and by matching on the number of trades we ensure that the cross-sectional variation in
our proxy for bandit activity is not driven by variation in the number of trades. The disadvantage of
this sample and any sample of less actively traded stocks is that the overall level of bandit activity
tends to be small making it harder to pinpoint the effect of changes in bandit activity.

Table 3 reports, for each of the variables we use in our analysis, the mean, median, standard
deviation, minimum, and maximum. The first three rows report these statistics for the total number
of SOES clusters, SOES trades, and non-SOES trades. The average number of clusters is 204 and
16 for the first and second sample, respectively, suggesting that bandit activity as measured by
our proxy is concentrated in the most active stocks. The median number of clusters of 61 and 2,
respectively, provide evidence of a skewed distribution with a lot of bandit activity concentrated
in a relatively small number of stocks. The bid-ask spread is measured as a weighted time series
average of the relative inside spread. Each observation is given a weight that is proportional to
the time the observed spread was in effect. The standard deviation and the range for the spread
suggest that there is substantial variation in this variable both within each sample and across the
two samples. On average stocks in the second sample have a bid-ask spread of 2.57% compared
with an average of 1.3% for the first sample.

The volatility is measured by the standard deviation of the half-hour returns based on the mid-
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quotes, excluding overnight returns. The maximum SOES size is a discrete variable that is equal to
1000 (for 294 stocks), 500 (for 10 stocks), and 200 (for 6 stocks) in the first sample. By construction
the second sample is evenly split between a SOES size of 1000 and a SOES size of 500. The number
of dealers for each stock is defined as the time-series average of the number of active dealers in the
stock. We compute the average trade size for all trades excluding trades that were part of a SOES
cluster. Note that SOES accounts for only a small fraction of the total trading volume for most
stocks. Accordingly, we find that the average trade size is larger than the maximum quantity that
can be traded in SOES. The last two rows report statistics for the market capitalization and the
average price. These two variables are likely to influence the bid-ask spread (see Harris (1994)),
although they do not play a direct role in our model. We use them as control variables to improve
the efficiency of our estimation. Overall, the companies in the second sample have a smaller market
capitalization, are less actively traded by investors, and less likely to be traded by bandits.

In the actual estimation we use transformations of some of the variables discussed above. In
the subsequent discussion our proxy for SOES bandit activity is defined as the logarithm of the
odds ratio for clusters, i.e., ln(l%p), where p is the proportion of clusters among all trades.?? We
normalize the average trade size by the maximum SOES quantity so that the resulting variable,
referred to below as the liquidity demand, corresponds to the § in the model. Finally, we take the
logarithm of the market capitalization and the average price.

Table 4 presents the correlation matrix for the variables that we use in the estimation. Notice
that the correlation between the average bid-ask spread (spr) and the proxy for SOES bandit
activity (soes) is —0.6835 and —0.5073, respectively. This negative correlation is consistent with
the observation that more bandits are active in stocks with smaller spreads (Proposition 9). This
does not rule out that an increase in bandit activity, holding everything else equal, leads to wider

spreads as predicted by Proposition 8.

22There are a total of 12 stocks in the first sample and 70 in the second sample for which the total number of
clusters is zero. There are fewer zero cluster observations for stocks with the largest SOES size, 8 and 18 for the first
and second sample, respectively. To ensure that the log of the odds-ratio is always defined we add one to both the
number of clusters and the total number of trades.
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7.3 Empirical Results

Table 5 reports the parameter estimates and corresponding p-values for our two-equation model
(Equation (29)).2> The estimates for the endogenous variables provide mixed support for the
predictions of the model. The parameter estimate for the bid-ask spread in the SOES Equation
is negative, with a p-value less than 0.001, for both sample. This means that an increase in the
spread is an effective defense against trading by bandits. On the other hand, we find only limited
support for the dealers’ claim that trading by the bandits forced them to widen their spreads: in
the Spread Equation, the coefficient on bandit activity is positive in both samples. The effect of
bandit on the spread is statistically weak, however, with the coefficient significant only at the 10%
level (p-value of 0.079) in the first sample. In the second sample the coefficient is not significantly
different from zero. Possible explanations for this finding are discussed in the next section.

The following numerical example illustrates the economic significance of these parameter esti-
mates for an average stock in the first sample. Consider a stock with an average probability of a
SOES cluster, which corresponds to 1.297%. A one standard deviation increase in this probability
(roughly 128 basis points) leads to an increase in the bid-ask spread of 30 basis points (which
corresponds to a 0.44 standard deviation increase).?* On the other hand, a one standard deviation
increase in the spread, which roughly corresponds to 68 basis points, leads to a 81 basis points
drop in the probability of a SOES cluster for an average stock (this corresponds to a 0.63 standard
deviation decrease).

The estimated coefficients for the maximum SOES quantity in the SOES Equation are positive
and highly significant for both samples. The coefficients on volatility are both positive, but only
the coefficient in the first sample is estimated precisely. In the Spread Equation the coefficient on
volatility is positive (p-values of 0.058 and 0.115, respectively). All the estimates above have the
predicted signs. In line with intuition, the coefficient on the number of dealers is negative in both

samples with p-values less than 0.001. The trade size does not appear to play an important role

23The system is estimated using three-stage least squares to account for possible cross-equation correlation in the
disturbances and to improve efficiency. Note that if the disturbances are uncorrelated three-stage least squares reduces
to two-stage least squares. In our estimations the qualitative effects are unchanged but the coefficient estimates change
somewhat suggesting that accounting for cross-equation correlation is useful. The log of the market capitalization
and the average price are added to the spread equation as additional control variables.

2 Note that due to the non-linear transformation, the exact effect of a change depends on the level of the probability
of a SOES cluster.
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in determining the spread in the first sample; the coefficient has a p-value of 0.453 whereas the
coefficient on trade size is negative and significant, as predicted by the model, in the second sample.

Each estimated parameter in Table 5 measures the impact on the spread (or bandit activity) of
one exogenous variable, holding all other variables constant. In order to study how a change in the
maximum SOES quantity ) would indirectly affect the spread, we estimate two “reduced-form”
regressions. Table 6 report the results for these regressions of the endogenous variables on all the
exogenous variables.

In Table 6, the coefficient on the maximum SOES quantity, in the Spread Equation, is positive
(with a p-value of 0.058 and 0.213, respectively). This implies, other things equal, that stocks with
a lower minimum quoted quantity have tighter spreads, as predicted by Proposition 10. According
to our model, the effect of the maximum SOES size on the spread is indirect: An increase in
this variable attracts bandit activity, which in turn tends to increase the spread. Hence, the low
statistical significance is consistent with our previous finding that SOES bandit activity has only a
moderate impact or, as is the case for the second sample, no impact on the spread. A back of the
envelope calculation shows that a change in the maximum SOES quantity from 500 to 1000 shares
would increase the spread by 19 basis points (or a 0.28 standard deviation increase) for stocks in
the first sample.

In the SOES Equation we also find a positive and significant (p-value < 0.001) coefficient on
the maximum SOES quantity in both samples. The coefficient estimate of 0.0011604 for the first
sample implies that increasing the maximum SOES quantity from 500 to 1000 shares leads to an
increase in the probability of a SOES cluster of roughly 100 basis points which corresponds to a
0.78 standard deviation increase.

Notice that the coefficient on the number of dealers is positive in the SOES Equation. Stocks
with a higher number of dealers have lower spreads. Hence they also tend to attract a larger number
of bandits. Bandits may also focus on stocks with a large number of dealers because stale quotes
occur more frequently in such stocks.

In the reduced form regressions (Table 6), volatility has a positive impact on bandit activity.
The effect is not statistically different from zero, however (p-value of 0.259 and 0.376, respectively).
Recall that in the reduced-form regressions, we do not control for the effect of the spread on the

number of bandits. It turns out that volatility has a positive impact on the spread. Hence the
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coefficient on volatility reflects a direct positive effect of volatility on bandit activity (confirmed in
Table 5) and an indirect negative effect via the spread. Our empirical results suggest that the two

effects essentially cancel so that volatility does not significantly affect the bandit activity.

7.4 Summary and Discussion

Overall, our results are consistent with a market where the extent of trading by the bandits is
strongly influenced by variables that predict profitability: (i) the bid-ask spread, (ii) the maximum
SOES size. However, our empirical results provide very weak evidence in support of the hypothesis
that increased bandit activity leads to wider spreads. This suggests that the dealers’ trading costs
or at least the bid-ask spreads are not very sensitive to losses due to bandit trading. The findings
of HS (1997) also support this conclusion.?®

At first glance our result may seem to be at odds with evidence of positive bandit profits as
reported in HS (1998). The result is also puzzling given the time and resources that dealers have
spent lobbying against the bandits. It is, of course, important to realize that the documented bandit
profits concern a relatively small number of very active stocks whereas our results for the bid-ask
spread are obtained for broader cross-sections of stocks. It is possible that on average the effect
of the bandits on the spread is too small to detect even if there was a stronger effect in a smaller
subset of stocks. The marginally significant effect found for the first sample and the insignificant
effect found for the second sample are consistent with this argument. Below we will discuss some
alternative explanations for our findings.

Several institutional rules may make it difficult to measure the impact of bandit activity on
spreads. First, in our sample period, the minimum price increment was $1/8 for most stocks. For
some stocks, this may be larger than the compensation required by dealers for the risk of being
picked off by bandits. In this case, an increase in bandit activity will have no discernible impact on
observed spreads even if it increases the cost of market-making. Second, on Nasdaq, traders have
the possibility of negotiating with the dealers, and many trades (especially large trades) receive
price improvements. In our model, dealers compensate the losses inflicted by bandits by quoting

larger spreads. In reality, they may decide to leave their quoted spread unchanged but to offer

*Harris and Schultz study changes in SOES trading and the average spread around a change in the maximum
SOES quantity from 1,000 to 500 shares and find strong evidence of a drop in bandit activity, but little evidence of
a drop in the spread.
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price improvements less frequently. In order to examine this explanation our model would need to
be extended to allow the dealers a richer set of choices. This analysis is beyond the scope of this
paper.26

To sum up, given the above difficulties one should not conclude that our results suggest that
very high levels of SOES bandit activity do not affect the cost of market making. What our results
suggest is that for a relatively large cross-section of stocks the SOES bandit activity level is not an

important determinant of market making costs.

8 Conclusion

We present a model of market making with costly monitoring. Using the model to shed light on
the arguments in the SOES debate, we find that when information monitoring is costly, there is a
strong incentive for dealers to pool on the inside spread in order to share monitoring costs. This
incentive hampers price competition and leads to equilibria in which dealers earn strictly positive
expected profits. When bandits can use the information revealed by quote updates to pick off
dealers we obtain a counteracting effect. Thus, the presence of bandits can, as proponents have
argued, add competitive pressure and lead to lower spreads and faster price discovery. On the other
hand, we show that when the bandits react more swiftly than dealers to quote updates it may lead
to a decrease in quoted depth. Thus, we provide some support for the arguments that unbridled
trading by bandits or other active traders may reduce market liquidity.

An important question in the SOES debate is whether the bandits cause dealers to post wider
spreads. Our theoretical model provides one way to separate the effect that a change in the spread
has on the bandit activity from the effect that a change in the bandit activity has on the spread. We
estimate a two—equation model that allows for the joint determination of the spread and the bandit
activity. Our results suggest that an increase in the spread has an economically and statistically
significant negative effect on the SOES bandit activity. The corresponding effect of the SOES
bandit activity on the spread is positive, but statistically significant only at the 10% level for a

sample of more active stocks. For a second sample of less actively traded stocks we cannot reject

26Gee for instance Bernhardt, Dvoracek, Hughson, and Werner (2000) for a model of price improvements. Their
analysis shows that price improvements are likely to be determined by factors that we can not capture in our analysis
(e.g., brokers’ identities and brokers’ trading frequency with a given dealer).
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the null hypothesis that bandit activity has no effect on the bid-ask spread. Thus, we find only
weak support for the claim that bandits cause dealers to widen their spreads. We also find that a
lower maximum SOES quantity is associated with a lower spread. This finding suggests that the
minimum quoted depth can be an effective policy instrument that indirectly effects the spread.
Important changes in Nasdaq trading rules have been implemented following the period we
study. The order handling and actual size rules implemented in 1997 appear to be associated with
less SOES activity overall according to Barclay et.al. (1999). This may reflect the fact that smaller
minimum quoted depth tend to decrease bandit profits. More recently, Nasdaq’s new SuperMontage
system includes an updated version of the SOES system called SuperSoes. The new system retains
the key feature of the old system namely automatic execution. One important difference is that
market makers can use the new system for both agency and proprietary orders. It therefore creates
a level playing field, something that market makers argued was missing in SOES. Interestingly, this
makes the market more similar to other financial markets with automatic trading systems. For
example, in electronic limit order markets traders can both place limit orders that may be picked
off by other traders or pick off limit orders placed by other traders. Clearly traders in these markets
also decide how intensively they monitor the flow of public information in order to reduce the risk
of being picked off, but as a by-product of this monitoring they may also discover stale quotes. This
makes the monitoring decision a little bit more complicated and provides one interesting direction

for future research.
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Appendix

Proof of Proposition 1. Using Equation (7)

OILg(Nis A—iy )
OAm

OProb(f € N)
O

OProb(f € My\i)] (o — Sp)Q
M 2

= —a |z°(My) +z° (M — 1)®

= O [ (M) — B (My = 1)(a + X)) e

Equation (1) is positive if and only if #°(Mj)y4 — ®z°(My — 1)(y4 + A;) > 0 and @ follows directly.

Vm # 1. (1)

Since z°(M,) (weakly) decreases with M, ® < 1.

Proof of Lemma 1. Suppose (to be contradicted) that there exists a Nash equilibrium in which
some dealers do not choose the same monitoring levels. Consider two dealers i and i’ such that
Af > X5, Writing Equation (8) for dealer ¢ and for dealer ¢’ and then taking the difference between
the two equations, we obtain that

Oé(O' — Sb)Q l ’

———— 2 [(Px® (M — 1))\ = A))] =T (A]) — ¥ (A)). 2
2(}\AJFM)Q[( z”(My — 1)) (A — A7)] (A =¥ (A7) (2)
Since Af > A}, the L.H.S of this equality is strictly negative. But since \If,() is increasing, the
R.H.S is strictly positive. This is impossible. This implies that in equilibrium all the dealers choose

the same monitoring level. A similar argument applies to the bandits.

Proof of Proposition 2. First we notice that Equation (11) can be rewritten as

a(o — Sp)Q°(My)
Mb(MbA* + N’y*)2

[NY* + h(®, L)MyA*] = e\ (3)

Thus, dividing Equation (3) by Equation (12), we find that A* and v* must satisfy

N’Y* + hM())\* . (M())\*)
(AF)MA + (N = 1)y - v
Writing this equation in term of one unknown variable, T = va*/\ , and noting that the monitoring
levels must be positive (YT > 0) we find a single solution: T = 0 A~ Dk Substituting (Tv*) for
(MpX*) in Equation (12), we find that v* solves
aQ’(o — Sy)(N — h)?

N(N +1—h)?

There is a unique positive solution to this equation, which yields v*. We then obtain A* using the
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fact that A\* = % As \* and v* are uniquely defined, there is a unique Nash equilibrium in the
monitoring stage. Substituting the expressions for A* and v* in Equations (7) and (9) yield IT; and
.

Proof of Lemma 2. By definition h(®, L) = @%. Hence h(®, L) increases with ®. Using this
. dC(M,®, L.

fact and Equation (16), we get % > 0.

Proof of Lemma 3. An equilibrium with M dealers posting the inside spread exists if and only if

S(M,®,L) < S(M,®,L). Using Equations (18) and (22), we obtain that this inequality is satisfied

if and only if Mz*(M)C(M,®,L) < AC(M,®, L), that is (using Equation (23))

z5(M)C(M,®,L) _ 1
C(1) < ()

This yields Inequality (24) after a straightforward manipulation.

Proof of Proposition 3. Part 1. Notice that C(Mj;,0,1) decreases with M. Therefore, using
Equation (15) with z*(M,) = 1/M,, if

Hz(Sb, M,) = %M[—OJ(U — Sp)C (M, 0,1) + (1 — Oé),BéSb] >0,
then
T (S, M + 1) = Wzl)[—a(a 8 C(My +1,0,1) + (1 — 2)B5S,] > 0.

This means that a sidelined dealer is always better off matching the inside spread. Hence we cannot
construct an equilibrium in which a subset of dealers are sidelined when ® = 0 and L = 1.

Part 2. Since C(M,0,1) decreases with M and C(1) = C(1,0, L) (by definition), Inequality (25) is
satisfied. The second part of the proposition follows.

Proof of Lemma 4. As L =1, Q*(M — 1) = Q*(M) = Q. It is then immediate that h(®,L) = ®.
Using Equation (16), we deduce that C(M,®,1) decreases with M for M > 2. Therefore we
can proceed as in the proof of Proposition 3 (1st part) to show that there is no equilibrium in
which a subset of two or more dealers post the spread and some dealers are sidelined. However,
we cannot discard the possibility that C(1) < C(2,®,1) since C increases with @ (recall that by
definition C'(1) = C(1,0, L)). Hence an equilibrium with only one dealer posting the inside spread
is a possibility.

Proof of Proposition 4. Let ®*(M,N) be the value of ® such that Inequality (25) is binding, i.e.
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such that C(M,®,1) — C(1) = 0. Since C(M, ®,1) increases with &, C(M,®,1) < C(1) if & < *
and C(M,®,1) > C(1) otherwise. Thus Inequality (25) is satisfied iff ® < ®*(M, N). Using

equation (16), we find that

(N +1)2

C(M,®,1) = C(1) =0 &

—(1+ N —®)[(1+ N)(1 - 28) — 3] =0. (6)

This equation has only one solution in [0, 1] which is

®*(M,N) = (

1+N)(2+N)[1_\/1_(M_l)(3+2N)]>0, for M >2.

3+ 2N M(2+ N)?

Note that ®*(.,.) increases with M and N and is always less than 1/2.
Proof of Proposition 5. When ® > ®*(M, N), Inequality (25) does not hold, and there is no equi-
librium in which all the dealers pool on the inside spread. If an equilibrium exists, it must therefore
feature a single dealer (an implication of Lemma 4). We now prove that such an equilibrium exists.
We denote S (1) the spread such that a dealer gets a zero expected profit when he is alone in posting
the inside spread, that is

IT5(S(1),1) = 0.

This means that $(1) = 5(1,0,1) (given by Equation (18)). In order for an equilibrium with only
one dealer (say dealer m) posting the best offers to exist, three conditions must be satisfied. First

dealer m must make positive expected profits. This requires
I14(Sy,1) =0,

which implies Sy > S (1). Moreover the spread posted by the sidelined dealers must be just slightly
greater than the inside spread, otherwise dealer m would raise his spread. Second, a sidelined dealer
should not be better off improving upon the inside spread. This condition requires that dealer m
obtains zero expected profit, i.e., S; = S (1). Third, among the sidelined dealers, none should be

better off pooling on the inside spread with dealer m. This imposes S(2,®,1) > (1), that is
C(2,®,1) > C(1).

We show that this is the case. Recall that ®*(M, N) increases with M. Hence if ® > &*(M, N)
then & > ®*(2, N). Now recall that, by definition, ®*(2, N) is such that C'(2,®*(2,N),1) = C(1).
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As C(2,®,1) increases with @, it follows that C'(2,®,1) > C(1) since & > &*(2, N). To sum up,
we have proved that the case in which only one dealer posts the inside spread S; = S(1) and all
the other dealers post a spread slightly greater than this spread is an equilibrium.

Proof of Proposition 6. We define F(M,®,L) = Mz*(M)C(M,®,L). Consider a situation in

which all the dealers post a spread Sy € [S(M,®, L), S(M,®, L)]. Recall that this situation is an

equilibrium iff Inequality (24) holds true. This inequality can be written
F(L,M,®) < C(1) for M>2. (7)

Notice that C(1) does not depend on L, ® and M. The function C(M, ®, L) depends on L through
h(®, L) (see Equation (16)). For M > 2,

& if L<M-1,
Me,L)=q & (ML) if (M-1)<L<M,
o (ML) if L>M.
Moreover we observe that (1) F(M,®,L) = LC(M,®,L) for L < M and that (2) F(M,®,L) =

MC(M,®, L) is independent of L for L > M. Using the previous remarks, computations yield

9F = C(M,®,L) >0 for L<(M-1)

%:C(Ma@aL)[l—%]>0 for (M —1)<L<M.

Hence F(M, ®, L) increases with L. It is immediate that F' increases with ® since C' increases with
this parameter.

For each L, we define ®(M, N, L) as the value of ® such that Inequality (7) is binding (if such
a value exists). Thus, for L = 1, & = ®* (see the proof of Proposition 4). Furthermore since F
increases with L and ®, it is immediate that ® decreases with L. We define L* (M) as the value of
L such that ®(M, N, L*) = 0. Observe that L*(M) > 1 since ®(M, N,1) = ®* > 0. For values of
L larger than L*(M), there is no positive value of ® such that Inequality (7) can be satisfied. This
achieves the proof of the proposition.

It is immediate that F(M,®,M) > C(1), V®. Thus, L*(M) < M. It follows that for
L < L*(M), F(M,®,L) = LC(M,®, L) so that F decreases with M. Hence ® increases with M.

In turn this implies that L* increases with M since & decreases with L. We use these two remarks
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in the proof of the next proposition.

Proof of Proposition 7. From Proposition 6, we know that an equilibrium with M, > 2 dealers
posting the inside spread exist iff ® < &(M;, N, L) and L < L*(M,). If these conditions are not
satisfied for My = M, they can not hold true for 2 < M, < M. Actually, in the proof of Proposition

6, we have shown that & and L* increases with the number of dealers. It follows that
®>dM,N,L) = &> (M, N,L) for 2<M, <M,

and that

L>L*M)=L>L*M,) for 2<M,<M,

Consequently if ® > <i>(M ,N,L) or L > L*(M), we can not construct an equilibrium with M > 2
dealers posting the inside spread. The proof of the existence of an equilibrium with a single dealer
posting the inside spread follows the steps of the proof of Proposition 5.

Proof of Lemma 5. Observe that S increases with C. As C' increases with & we conclude that §

increases with ®. Using Equation (23), we get

OAC(M,®,L)  Muz*(M)9C(M,®,L)

9% M1 oo v

This means that AC decreases with ®. As S increases with AC, we obtain that S decreases with

®. By definition, ® is such that

Maz*(M)C(M, &, L) = c(1) “ ¢(1,0,L).

Using this remark, Equations (18) and (22) and the fact that S(1) e/ 5(1,0,1), we deduce that

S(M,®,L) = S(M,d,L) = S(1).
Proof of Corollary 1. Immediate using Lemma 5.
Proof of Corollary 2. Since & < Ci)(M ,N, L), all the dealers post the inside spread in equilibrium
and the set of equilibrium spread is [S(M, ®, L), S(M, ®, L)]. Since M, = M, Proposition 2 yields

D) Na@*(o — S;)
A(®) = \/cM2(1 +N —h(qﬁ,L))z.

In the zero expected profit equilibrium, Sy = S(M,®,L). Substituting S(M,®,L) in the
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previous equation and using the expression for § (given by Equation (18)), we obtain

N(@) = \/ NaQ*((1 - a)of0)
cM2[aMzs(M)C(M,®,L) + (1 — a)Bd](1 + N — h(®, L))?"

Substituting C'(M, ®, L) by its expression (given by Equation (16)), A* can be written as

M2 [aN (Mzs(M)(1 + N — h(®, L)) + Z0U) 4 (1 - )86) (1 + N — h(®, L))2]

)\*(@) — \j NO[QS((l — Oé)O'B(S)

Recall that h(®, L) increases with ®. It follows that % > 0. In the maximal spread equilibrium,
A* is given by Equation (8) but C'(M, ®, L) is replaced by AC(M,®, L). As AC decreases with @,
it is direct that dealers’ monitoring level increases with ®. Thus, independently of the equilibrium

we consider in the quoting stage, we obtain
A*(0) < A*(®) V& < &(M, N, L). (9)

Proof of Corollary 3. Using Proposition 2, we obtain that the aggregate monitoring level is

N (@) +775(®) = MA* + Ny* = \/NO‘QS(M)(U_S’T). (10)

c
In the zero expected profit equilibrium, S; = S(M,®, L). Since S(M,0,L) < S(M,®, L), we obtain

(using Equation (10))
Na(®) +7A(®) < N4(0) +74(0) V@ < B(M, N, L).

Now consider the maximal spread equilibrium. In this case, S = S(M, ®, L). Since S(M,0,L) >

S(M,®, L), we obtain

Na(®) +7A(®) > N4(0) +74(0) V@ < &(M, N, L).

Proof of Proposition 8. There are three different cases in equilibrium: (1) all the dealers post the
zero expected profit spread S (M, ®,L); (2) a single dealer posts the zero expected profit spread
S(1);(3) all the dealers post the maximal spread S(M, @, L).

Case 1. Recall that for this situation to be an equilibrium, it must be the case that ¢ < &. Observe
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that S increases with C. Using Equation (16), we obtain

9C  (1—-h(®,L)) (1-—h—N)
N~ (N+1—h(@®L)2  2MN+1—h)p ve,vL. (11)

Notice that h(®,L) < ® < &. Furthermore ®(M,N,L) < &* < L. Hence h(®,L) < 1/2. Using
this remark, we obtain % > 0, which implies that % > 0.

Case 2. We have
c()
2O + (1 —a)p0) " (12)

By definition C(1) = C(1,0,L). Using Equation (16), we deduce that C(1) increases with N.

S(1) = ao(

Consequently $(1) increases with N.

Case 3. Observe that S increases with AC. Using Equation (23), we obtain

020 (L) (S0 01

Using Equation (11), we obtain that % < 0 for all values of ® and L. This means that %

decreases with ®. Since C'(1) = C(1,0, L), we deduce that

90(1) _ 9C(M, ®, L)
ON ON

Since 2°(M) < 1, we conclude that %A—NC > 0. Consequently S(M,®, L) increases with N.
Proof of Proposition 9. Immediate using Equation (28).

Proof of Corollary 4.

Part 1. Consider the case in which the dealers post the zero expected profit spread, S (M,®, L).
It is immediate from Equation (18) that S increases with ¢ and that S decreases with §. The
argument is identical when the dealers post the maximal spread (using Equation (22)). The last
possibility is that a single dealer posts a spread equal to S(1). By definition $(1) = $(1,0, L) which
increases with o and decreases with 4.

Part 2. Consider an increase in ). It shifts bandits’ net expected profit upward for a given value
of N (see Equation (28)). This induces entry of more bandits. The effect of o is identical.

Proof of Corollary 5. Under the assumptions on the parameters, all the dealers post the spread in

equilibrium. Suppose first that they post the zero expected profit spread

S(M,®,1) = ac (0(

C(M,®,1)
M,®,1) + (1 —a)ﬁ5>‘
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Using Equation (16), we obtain that C(M,®,1) decreases with M. It follows that S(M,®,1)

decreases with M. Now suppose that the dealers post the maximal spread

S(M,®,1) = ac (AC(

AC(M,®,1)
M,®, 1)+ (1 —a)ﬁé) ‘

Observe that it increases with 2C. Computations yield

aAC(aJ;\/.;,@,l) _ (M11)2 [C(M,cp,l) —C(1)+

N(M —-1) }
2M2(1+ N —®)2]°

The term in brackets increases with ®. It is strictly negative for ® = 0 and strictly positive
for ® = ®*(M,N) (because by the definition of ®*, we have C(1) = C(M, ®*,1)). Thus there

exists ® € (0,®*) such that % = 0. For & < @, % < 0 and for @ > @',

OAC(M,®,1)
o >0

Proof of Proposition 10.
Part 1

Case 1. L =1 and ® < ®*(M,1). Under these conditions, all the dealers post the inside spread in

equilibrium, for all values of N (because ®* increases with N). An equilibrium is a pair {S;, N*}
such that (i) IT*(S;, N*) = K and (ii) Sf € [S(M, ®,1),S(M,®,1)]. Suppose first that the dealers
post the zero expected profit spread, and substitute Sy by S’(M, ®, 1) in IT%. Using Equation (28),

we obtain that N* must satisfy

a(l —a)BiQo 2N*(N* +1—®) — (N* — ®)?)
(aC(M, ®, 1)+ (1— a),85) AN*(N* +1 — )2

=K. (13)

Other things equal, the L.H.S of this equation increases with ) and decreases with N* (because
the term in bracket decreases with N* and C'(M, ®, 1) increases with N). We deduce that when Q
increases, N* increases as well. Since S (M, ®,1) increases with the number of bandits (Proposition
8), we conclude that the spread increases with Q.

Suppose now that the dealers post the maximal spread equilibrium, S; = S(M,®,1). We can
follows exactly the same steps as for Sy = S. The only difference is that AC replaces C in the
denominator of Equation (13). But, since AC' increases with N, the same argument applies.

Case 2. L > M. Under this condition, L > L*(M) for all values of N since L*(M) is always smaller

than M (see the proof of Proposition 6). In this case, a single dealer posts the inside spread in

equilibrium. This spread is $(1). Then the argument is identical to Case 1 with Sy = S(1).
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Part 2. Using Proposition 2, we obtain that

A+ = \/aN*Qs(Mb)(a - 5;)

C

. (14)

The number of bandits in equilibrium is such that each bandit’s expected profit is zero in

equilibrium. Hence, using Equation (28), we obtain:

aQs(Mb)(a—Sg‘):K[ AN*(N* 41— h(®,L))? ]

2N*(N* +1—h(®, L)) — (N* — h(®, L))

Substituting this expression in Equation (14) yields

Lo |K A(N*)2(N* +1—h(P,L))?
Ad A= \/;\/[2N*(N* 1 h(®,L) — (N* - h((I),L))Q} '

The term in brackets increases in N*. Thus, A% 4+ 77 increases with N*. Since N* increases in (),

A% + 7} increases with @) as well.
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Table 4

Correlation Matrix

soes spr vlty maxq ndlr liqd mkcp
spr -0.6835
(-0.5073)
vity -0.2344 0.4871
(-0.3240)  (0.4180)
maxq 0.2813 -0.0747 -0.1184
(0.4911) (-0.1300) (-0.3455)
ndlr 0.1081 -0.2568 -0.3185 0.1882
(0.0029) (-0.1340) (-0.1592)  (0.1430)
ligd -0.1850 0.0438 -0.1262 -0.7325 -0.1707
(-0.1649)  (0.0381)  (0.2181) (-0.6229) (-0.1452)
mkcp 0.4636 -0.7509 -0.5240 0.0792 0.4249 -0.0074
(0.5900) (-0.7099) (-0.4271)  (0.2517) (-0.0351) (-0.0443)
avgP 0.5923 -0.7572 -0.3415 0.0569 -0.1691 -0.0225 0.6966
(0.5390) (-0.6251) (-0.3522)  (0.1776) (-0.4217) (-0.1261) (0.7904)

The variables in the correlation matrix are the following: the log odds ratio of the probability of a SOES
cluster (soes), the average time-weighted bid-ask spread (spr), the maximum SOES quantity (maxq), the
number of dealers (ndlr), the average trade size relative to the maximum SOES quantity (liqd), the logarithm
of the market capitalization (mkcp), the logarithm of the average price (avgP). The correlation coefficients
for the second sample are reported in parentheses directly below the corresponding coefficients for the first

sample.
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Quoting Stage Dealers

S=(S,--8,)
Monitoring Stage Dealers and Bandits
AS,M)=(A (S, M,).... A, (S,M,) WS, M)=(Y, (S, M),y (S, M)
b
Trading Stage Nature
Prob=a/2
A\ —
Vl—VO+0 Vl—VO—G Vl—V0
Prob(f in N) Prob(f in M) Prob=p Prob=1-f
v
A bandit One dealer The case of A liquidity No order
submits updates V,=V,"0 trader is submitted
a buy his quotes is a mirror image arrives
order of the case
Prob=o Prob=(1-) V=Vto Prob=1/2 Prob=1/2

A bandit The other Submits Submits

submits dealers a buy asell
a buy update order order
order their quotes

! ! l |

Payoffs are Realized

Figure 1: The Trading Game.
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Case 1: 1<L<L'(M)
Spread

wnl

S@)

wn>

N
(o)

>
)

Spread

Case 2: L > L*(M)

S@)

Figure 2: The equilibrium relationship between ® and L and the spread. The zero expected profit
spread is denoted by S. The maximal spread equilibrium is denoted by S.
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