Securities & Investments Analysis

• Last 2 Weeks: Part IV
 – Bond Portfolio Management
 – Risk Management + Primer on Derivatives
• Lecture #10: Part V
 – Individual equity valuation
 – Fundamental Analysis
 • “Top-Down Analysis”
 • Three valuation methods

Part V:
Fundamental Analysis

Top-Down Approach
• “Top-Down” Security Analysis
 – terminology
 • fundamental analysis
 – typical approach
 • macroeconomic analysis
 » domestic and global economic analysis
 • industry analysis
 • firm-level analysis
 » company analysis
Macroeconomic Analysis

- Global Economic Considerations
 - Performance in countries and regions
 - highly variable
 - Political risk
 - Exchange rate risk
 - Sales
 - Profits
 - Stock returns

Macroeconomic Analysis 2

- Key Economic Variables
 - GDP
 - Gross Domestic Product vs. Industrial Production
 - Unemployment rate
 - also, capacity utilization
 - Interest rate & Inflation
 - Budget deficit (federal vs. local)
 - International measures
 - Consumer sentiment

Macroeconomic Analysis 3

- Federal Government Policy
 - Fiscal Policy
 - What? (Tools)
 - government spending
 - taxing actions
 - Why?
 - stimulate or cool down the economy
 - FX rate considerations (non-US)
 - How?
 - cumbersome to implement
 - fairly direct impact (caveats?)
Macroeconomic Analysis 4

- Federal Government Policy
 - Monetary Policy
 - What? (Tools)
 - Discount rate
 - Reserve requirements
 - Open market operations
 » Fed buys or sells bonds on its own account
 - Why?
 » affect money supply to influence economic activity
 - How?
 » initial & feedback effects
 » easy to implement, but indirect & slow?

Macroeconomic Analysis 5

- Demand shock
 - definition
 » event that affects demand for goods & services
 » in the economy
 - examples
 » tax rate cut
 » increases in government spending
 - why do we care?

Macroeconomic Analysis 6

- Supply shock
 - definition
 » event that influences production capacity
 » or production costs
 - examples
 » commodity price changes (oil, etc.)
 » educational level of economic agents
 - why do we care?
Macroeconomic Analysis 7

- Business Cycle
 - Peak
 - Trough
- Technical aspects
 - Identifying cycles & Procyclicality (handout)
- Industry relationship to business cycles
 - Cyclic
 - Defensive

Macroeconomic Analysis 8

Defining the real business cycle

Least-squares forecasting. Deviations from a trend (--- underlying model; mechanical growth model)

\[\sum_{i=1}^{n} (\epsilon_t - \hat{\epsilon}_t)^2 \]

Concentrations of the cyclical components of the series determine procyclicality or countercyclicality.

Macroeconomic Analysis 9
Macroeconomic Analysis 13

- NBER Cyclical Indicators
 - **Leading Indicators**
 - rise and fall in advance of the economy
 - examples
 - avg. weekly hours of production workers
 - stock prices (useful?), yield spreads, TSOIR slope
 - **Coincident Indicators**
 - change directly with the economy
 - examples
 - industrial production
 - manufacturing and trade sales

Macroeconomic Analysis 14

- NBER Cyclical Indicators (continued)
 - **Lagging Indicators**
 - lag economic performance
 - examples
 - ratio of trade inventories to sales
 - ratio of consumer credit outstanding to personal income
Industry Analysis

- Defining “industry”
- Sensitivity to business cycles
- Factors affecting sensitivity
 - Sensitivity of sales
 - Operating leverage
 - Financial leverage
- Industry life cycles
Industry Life Cycles

<table>
<thead>
<tr>
<th>Stage</th>
<th>Sales Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start-up</td>
<td>Rapid & Increasing</td>
</tr>
<tr>
<td>Consolidation</td>
<td>Stable</td>
</tr>
<tr>
<td>Maturity</td>
<td>Slowing</td>
</tr>
<tr>
<td>Relative Decline</td>
<td>Minimal or Negative</td>
</tr>
</tbody>
</table>

Industry Analysis 4

• Intrinsic Value (IV) vs. Market Price (MP)

• IV=? Models of Equity Valuation
 – Basic Types of Models (“Job Interview Questions”)
 • Balance Sheet Models <-> Financial Ratios
 • Dividend Discount Models <-> DCF
 = growth rates?
 • Price/Earning Ratios <-> Comparables?
 – Estimating Growth Rates & Opportunities

Fundamental Stock Analysis:

Intrinsic Value vs. Market Price

• Intrinsic Value
 • “IV” = Self assigned Value
 • Variety of models are used for estimation

• Market Price
 • “MP” = Consensus value of all potential trader’s IV

• Trading Signal
 • IV > MP => Buy
 • IV < MP => Sell or Short Sell
 • IV = MP => Hold (“Fairly Priced”)
General Dividend Discount Model

\[V_0 = \sum_{t=1}^{\infty} \frac{D_t}{(1 + k)^t} \]

- \(V_0 \) = Value of Stock
- \(D_t \) = Dividend
- \(k \) = “required return”

General Dividend Discount Model 2

- 1. No Growth Model

\[V_0 = \frac{D}{k} \]

• Why?
 - stocks with earnings *and* dividends
 - that are expected to remain constant
• Preferred Stock?

General Dividend Discount Model 3

- Example

\[V_0 = \frac{D}{k} \]

given: \(E_1 = D_t = $5.00 \)
 \(k = 0.15 \)
\(V_0 = $5.00 / 0.15 = $33.33 \)
General Dividend Discount Model 4

- 2. Constant Growth Model

\[V_0 = \frac{D_0(1 + g)}{k - g} \]

\(g = \) constant perpetual growth rate

General Dividend Discount Model 5

- Estimating Dividend Growth Rates

\[g = ROE \times b \]

\(g \) = growth rate in dividends
\(ROE \) = Return On Equity for the firm
\(b \) = plowback or retention percentage rate
\((1 - \text{dividend payout percentage rate}) \)

General Dividend Discount Model 6

- Example

\[V_0 = \frac{D_0(1 + g)}{k - g} \]

given: \(E_i = $5.00; \ b = 40\%; \ k = 15\%; \ ROE = 20\% \)
\(1 - b = 60\% \)
\(D_1 = $3.00 \)
\(g = ROE \times b = 8\% \)
\(V_0 = 3.00 / (0.15 - 0.08) = $42.86 \)
Specified Holding Period Model

\[V_0 = \frac{D_1}{(1+k)^1} + \frac{D_2}{(1+k)^2} + \cdots + \frac{D_N + P_N}{(1+k)^N} \]

\(P_N\) = expected sales price for the stock at time \(N\)
\(N\) = the specified number of years the stock is expected to be held

Partitioning Value:
Growth & No-Growth Components

\[V_o = \frac{E_1}{k} + PVGO \]

\[PVGO = \frac{D_1(1+g)}{(k-g)} \cdot \frac{E_1}{k} \]

\(PVGO\) = Present Value of Growth Opportunities
\(E_1\) = Earnings Per Share for period 1

---/---

Partitioning Value:
Growth & No-Growth Components 2

– Example

given: \(\text{ROE} = 20\%; \ d = 60\%; \ b = 40\%\)
\(E_1 = \$5.00; \ D_1 = \$3.00; \ k = 15\%\)

g = ROE x plowback
\(= 0.20 \times 0.40 = 0.08\) or 8%

---/---
Partitioning Value:
Growth & No-Growth Components 3

\[V_o = \frac{3}{0.15 - 0.08} = 42.86 \]
\[NGV_o = \frac{5}{0.15} = 33.33 \]
\[PVGO = 42.86 - 33.33 = 9.52 \]

- \(V_o \) = value with growth
- \(NGV_o \) = no growth component value
- \(PVGO \) = Present Value of Growth Opportunities

Price Earnings Ratios

- P/E Ratios are a function of two factors
 - Required Rates of Return (k)
 - Expected growth in Dividends (g)
- Uses
 - Relative valuation
 - Extensive Use in industry

a. P/E Ratio: No Expected Growth

\[P_0 = \frac{E_1}{k} \]
\[\frac{P_0}{E_1} = \frac{1}{k} \]

- \(E_1 \) = expected earnings for coming year
- \(E_1 \) is equal to \(D_1 \) under no growth
- \(k \) = required rate of return
Numerical Example: No Growth

Given: \(E_0 = $2.50 \quad g = 0 \quad k = 12.5\% \)

\[P_0 = \frac{D}{k} = \frac{2.50}{0.125} = $20.00 \]

\[PE = \frac{1}{k} = \frac{1}{0.125} = 8 \]

b. P/E Ratio: Constant Growth

\[P_0 = \frac{D_1}{k - g} = \frac{E_1(1 - b)}{k - (b \times ROE)} \]

\[P_0 = \frac{1 - b}{E_1 \times k - (b \times ROE)} \]

\(b = \) plowback ratio = retention ratio

\(ROE = \) Return on Equity

Numerical Example with Growth

Given: \(E_0 =$2.50; k=12.5\%; b=60\% ; \) \(ROE=15\% \)

\((1-b) = 40\% \)

\[E_1 = $2.50 \times (1 + (0.6)(0.15)) = $2.73 \]

\[D_1 = $2.73 \times (1 - 0.6) = $1.09 \]

\(k = 12.5\% \quad g = ROE \times \text{plowback} = 15\% \times 60\% = 9\% \)

\[P_0 = \frac{1.09}{(0.125 - 0.09)} = \frac{1.09}{0.035} = 31.14 \]

\[PE = \frac{31.14}{2.73} = 11.4 \]

\[PE = \frac{(1 - 0.60) / (0.125 - 0.09)} = 11.4 \]
Pitfalls in P/E Analysis

- Use of accounting earnings
 - Historical costs
 - May not reflect economic earnings
- Reported earnings
 - Fluctuate around the business cycle

Inflation & Equity Valuation

- **NOT Exam Material**
- Inflation has an impact on equity valuations
- Historical costs
 - Underestimate economic costs
- Empirical research
 - Inflation has an adverse effect on equity values
 - Real rates of return are lower with high rates of inflation

Inflation & Equity Valuation 2

- Problem
 - Lower Equity Values with Inflation
- Explanations?
 - Shocks cause expectation of lower earnings
 - By market participants
 - Returns are viewed as being riskier
 - With higher rates of inflation
 - Real dividends are lower
 - Because of taxes