Derivatives

• Lectures #10-12:
 • Part V: Option pricing
 » Determinants of an Option’s Premium
 » Black-Scholes formula
 » Intro to Binomial Trees & Risk Neutral Valuation

• Lectures #11-13:
 • Part VI: Valuing Options in Practice
 » Binomial Trees & Risk-Neutral Option Pricing
 » Black-Scholes extensions

Part VI: Valuing Options in Practice

Practical Binomial Option Pricing

• Fundamentals
 • What? Why? How?

• Underlying Price Movements
 • Binomial trees

• Option Pricing
 • 1. no dividends
 • 2. continuous dividends
 • 3. discrete, known dividends

Binomial Option Pricing

• Basic idea
 • approximate the movements in an asset’s price
 » by discretizing the underlying’s price movements
 » to simplify the pricing of derivatives on the asset

• Realistic?
 • so far
 » 3-month or 1-year intervals
 • in practice
 » divide option’s life span into 30+ periods (ideally: 100+)
 » yields $2^{30} = \text{1 billion}$ possible price paths

Binomial Trees

• Asset Price Movements
 • divide option life (t to T) into small intervals Δt
 • in each interval of time, assume asset price can move $UP \\downarrow$
 by a proportional amount u
 • move $DOWN \\uparrow$
 by a proportional amount d

Binomial Trees 2

• Moves in time interval Δt ($H7$ Fig. 19.1; $H8$ Fig. 20.1)

• Derivatives can be “risk-neutrally” priced
 • expected return of all securities = risk-free rate
 • discounting of all cash-flows is done at risk-free rate
 • calls, puts, stocks, etc.
Tree Parameters

• What?
 • p, u, & d

• How?
 • tree must give correct values
 • for the mean & standard deviation
 • of the stock price changes
 • in a risk-neutral world (why?)

• Simplification
 • assume that $u = 1/d$

Tree Parameters 2

• 1. Nondividend Paying Stock

• Situation
 • need to find u, p and d
 • find 3 equations with 3 unknowns
 • mean, variance, simplification

• a. mean of the stock price:
 • expected stock price: $pS_u + (1-p)S_d$
 • risk-neutral value: $Se^{\Delta t}$
 • hence (Eq. 20.1): $S e^{\Delta t} = pS_u + (1-p)S_d$

Tree Parameters 3

• b. standard deviation of the stock price:
 • variance: $pS^2u^2 + (1-p)S^2d^2 - S^2[pu + (1-p)d]^2$
 • risk-neutral value: $S^2 \sigma^2 \Delta t$
 • hence: $S^2 \sigma^2 \Delta t = pS^2u^2 + (1-p)S^2d^2 - S^2[pu + (1-p)d]^2$

• c. simplification
 • assume that $u = 1/d$

Tree Parameters 4

• a & b & c: approximate solution
 • if Δt is small, then (Ch. 17, H6; Ch. 19, H7; Ch. 20, H8)

 $u = e^{\sigma \sqrt{\Delta t}}$ \hspace{1cm} (20.5)
 $d = e^{-\sigma \sqrt{\Delta t}}$ \hspace{1cm} (20.6)
 $p = \frac{a-d}{u-d} = \text{risk-neutral probability}$ \hspace{1cm} (20.4)
 $a = e^{\gamma \Delta t} = \text{growth factor}$ \hspace{1cm} (20.7)

Tree Parameters 5

• Full (Recombining) Tree
 (Fig.19.2 or 20.2)

Backwards Induction

• Idea
 • We know the value of the option
 • at the final nodes
 • Work back through the tree
 • using risk-neutral valuation
 • to calculate the value of the option at each node

• American vs. European options
 • American options
 • test for early exercise at each node (where appropriate)
Backward Induction 2 – Put Example

- Option parameters
 \(S = 50; \ X = 50; \ T = 5 \) months

- Other data
 \(\text{annualized risk-free rate} \quad r = 10\% \)
 \(\text{underlying annual std. dev.} \quad \sigma = 40\% \)

- Time parameters
 \(T = 5 \) months = \(\frac{5}{12} = 0.4167 \)
 \(\Delta t = 1 \) month = \(\frac{1}{12} = 0.0833 \)

Backward Induction 3 – Put Example

- Solution
 - parameters imply
 \(u = 1.1224; \ d = 0.8909; \ a = 1.0084; \ p = 0.5076 \)
 - in practice
 » solve tree manually (Fig. H7-19.2 or H8 20.2)
 » or use software
 - example: DerivaGem (Fig. 19.3 or 20.3)

Backward Induction 4 – Put Example

Fig. 20.3

Tree Parameters 6

- \(2.\) Dividend Paying Stock (continuous time)
 - dividend yield
 \(\rightarrow q \) (continuously compounded rate)
 - payout consequence
 » underlying price grows more slowly
 - as dividends are being paid out
 - risk-neutral valuation
 » must reflect lower growth rate of underlying price

Tree Parameters 7

- Situation
 - need to find \(u, p \) and \(d \)
 - find 3 equations with 3 unknowns
 \(\rightarrow \) mean, variance, simplification

- \(a. \) mean of the stock price:
 - expected stock price: \(pS^u + (1-p)S^d \)
 - risk-neutral value: \(S \cdot e^{r \Delta t} \)
 - hence (Eq. 19.1 or 20.1):
 \(S \cdot e^{r \Delta t} = pS^u + (1-p)S^d \)

Tree Parameters 8

- \(b.\) standard deviation of the stock price:
 - variance:
 \(pS^2u^2 + (1-p)S^2d^2 - S^2[pu + (1-p)d]^2 \)
 - risk-neutral value:
 \(S \cdot \sigma^2 \Delta t \)
 - hence:
 \(S \cdot \sigma^2 \Delta t = pS^2u^2 + (1-p)S^2d^2 - S^2[pu + (1-p)d]^2 \)

- \(c.\) simplification
 - assume that \(u = 1/d \)
Tree Parameters 9

- a, b, and c: approximate solution
 - if Δt is small, then (Ch. 20 in H8, Ch. 19 in H7)

\[
\begin{align*}
 u &= e^{\sigma \sqrt{\Delta t}} \\
 d &= e^{-\sigma \sqrt{\Delta t}} \\
 p &= \frac{a - d}{u - d} \\
 a &= e^{(r-q) \Delta t}
\end{align*}
\]

Tree Parameters 10

- Relevance of the continuous-payout case
 - Analogy
 - treatment similar to Black-Scholes
 - Cases
 - stock index option
 - q: dividend yield on the index
 - foreign currency option
 - q: foreign risk-free rate $= r^*$
 - futures contracts option
 - $q = r$
 - why? ensures expected growth of F in a R-N world is 0

Tree Parameters 11

- Examples of the continuous-payout case
 - DerivaGem software
 - e.g., importance of dividends for early exercise
 - IBM is currently trading at $S_0 = 86.50$
 - annualized interest rates are currently around $r = 1.75\%$
 - the annual stock return volatility is about $\sigma = 21\%$
 - strike $X = 90$: should you exercise an IBM call early?
 - IBM’s dividend yield is currently about $q = 2.61\%$
 - P.22: American call; p.23: European call

Tree Parameters 12

- Strike price = X
- Discount factor per step = 1.0007
- Time step, $\Delta t = 1.0005$ years, 30.42 days
- Growth factor per step, $a = 1.0015$
- Probability of up move, $p = 0.4929$
- Up step size, $u = 1.0025$
- Down step size, $d = 0.9941$

Tree Parameters 13

- Strike price = X
- Discount factor per step = 1.0007
- Time step, $\Delta t = 1.0005$ years, 30.42 days
- Growth factor per step, $a = 1.0015$
- Probability of up move, $p = 0.4929$
- Up step size, $u = 1.0025$
- Down step size, $d = 0.9941$

Tree Parameters 14

- 3. Dividend Paying Stock (yield known)
 - Problem
 - the dividend is paid once (or a few times)
 - during the life of the option
 - Solution
 - similar to case 2 (continuously paid dividends)
 - intuition
 - once the dividend has been paid
 - the tree recombines (Fig. 17.7 in H6, Fig. 19.7 in H7)
Tree Parameters 13

- 4. Dividend Paying Stock (value known)

Problem
- tree does not recombine

Solution
- draw an initial tree (uncertain component)
 - for the stock price less the present value of the dividends
- create the final tree (add certain component)
 - by adding the present value of the dividends at each node

Tree Parameters 14

- Ex-dividend date \(= \tau \) (Figs. 19.8-9 or 20.7-8)
 - tree step
 - \(i = 1, 2, \ldots, N \)
 - \(N \Delta t = T \)
 - Uncertain component's value at time \(i \Delta t \)
 - \(S^* = S \)
 - when \(i \Delta t > \tau \) (i.e., ex-dividend)
 - \(S^* = S - D^* \exp[-r(\tau - i \Delta t)] \)
 - when \(i \Delta t \leq \tau \) (i.e., cum-dividend)

Tree Parameters 15

- 4. IBM, no div.

Tree Parameters 16

- 4. June div. = 56c

Extensions

- Control-variate techniques
 - why?
 - when? Black-Scholes is OK
- Interest rates
 - in Black-Scholes, theoretical problem
 - here, simple solution (why?)
- Extra lecture
 - interest rate derivatives
Control-Variate Technique for American Options

• Use the same tree
 • to calculate the value of
 » American option, f_A and corresponding European option, f_E
 • Let f_{BS} = Black-Scholes price of the same option.
 » price of the American option can then be adjusted
 to $f_A + f_{BS} - f_E$

• Underlying assumption
 • "tree-errors" are the same
 • for European and American options

Control-Variate Technique for American Options 2

• Use the same tree
 • to calculate the value of
 » American option, $f_A = \$1.63$
 » and corresponding European option, $f_E = \$1.50$
 • Let f_{BS} = B&S price of the same option = $\$1.52$
 » price of the American option can then be adjusted
 to $f_A + f_{BS} - f_E = \$1.63 + (1.52-1.50) = \1.65

• Underlying assumption
 • "tree-errors" are the same
 • for European and American options

Time-Varying Interest Rates

• Allow for interest rates to vary over time

• Before, $
p = \frac{a - d}{u - d}$
 $a = e^{rt}$

• Now, $p(t) = \frac{a(t) - d}{u - d}$
 $a(t) = e^{rt(t)}$