§3.4: 1. If m is any integer, then $m(m + 1) = m^2 + m$ is the product of m and its successor. That is to say, $m^2 + m$ is the product of two consecutive integers. The results of the preview activities verify that this product is even by examining the two possibilities: m is odd, or m is even. In both cases, the product of m with $m + 1$ is divisible by 2.

2. We prove the following proposition.

Proposition. Suppose that u is an odd integer; then the equation $x^2 + x - u = 0$ has no integer solutions.

Proof. Suppose for contradiction that there exists an integer solution m of the equation

$$x^2 + x - u = 0,$$

where u is an odd integer. We will examine the two cases: m is odd and m is even. If m is odd, then there exists an integer k such that

$$m = 2k + 1.$$

Since m is a root of our equation, it must be that

$$(2k + 1)^2 + (2k + 1) - u = 0.$$

This implies that

$$4k^2 + 4k + 1 + 2k + 1 - u = 0.$$

This is clearly not possible, for $4k^2 + 10k + 2$ is even. Now suppose that m is even. If so, then there exists an integer k such that $m = 2k$; then

$$4k^2 + 2k - u = 0.$$

This is also impossible, for $4k^2 + 2k$ is even. \[\square\]

3. We prove the following.

Proposition. If n is an odd integer, the $n = 4k + 1$ for some integer k or $n = 4k + 3$ for some integer k.

Proof. Suppose that \(n \) is odd; then there is an integer \(j \) such that \(n = 2j + 1 \). There are two possibilities for \(j \). Either \(j \) is even, or \(j \) is odd. If \(j \) is even, then there is an integer \(k \) such that \(j = 2k \). Thus

\[n = 4k + 1. \]

On the other hand, if \(j \) is odd, there is an integer \(k \) such that \(j = 2k + 1 \). This means that

\[n = 2(2k + 1) + 1. \]

This is equivalent to

\[n = 4k + 3. \]

\(\square \)

6. (a) We prove the following.

Proposition. If \(m \) and \(n \) are consecutive integers, then \(4 \) divides \(m^2 + n^2 - 1 \).

Proof. Suppose that \(m \) and \(n \) are consecutive integers; we can assume that \(n = m + 1 \) in this situation. Then

\[m^2 + n^2 - 1 = m^2 + (m+1)^2 - 1 = m^2 + m^2 + 2m + 1 - 1 = 2m^2 + 2m = 2m(m+1). \]

Now there are two cases: either \(m \) is even, or \(m \) is odd. If \(m \) is even, then \(4 \) will divide \(2m \), and therefore \(2m(m+1) \). If \(m \) is odd, then \(m + 1 \) is even. \(2 \) will divide \(2m \), and \(2 \) will also divide \(m + 1 \). It follows that \(4 \) will divide \(2m(m+1) \).

On the other hand, the converse is untrue. Let \(m = 1 \) and let \(n = 4 \).

(b) We prove the following.

Proposition. For all integers \(m, n \), if \(4 \) divides \(m^2 - n^2 \), then either both \(m \) and \(n \) are even, or \(m \) and \(n \) are odd.

Proof. First suppose that both \(m \) and \(n \) are even. If so, then there exist integers \(j \) and \(k \) such that \(m = 2j \) and \(n = 2j \). So

\[m^2 - n^2 = 4k^2 - 4j^2 = 4(k^2 - j^2). \]

This implies that \(4 \) divides \(m^2 - n^2 \).

Now suppose that \(m \) and \(n \) are both odd. If so, then there exist integers \(k \) and \(j \) such that \(m = 2k + 1 \) and \(n = 2j + 1 \). So

\[m^2 - n^2 = 4k^2 + 4k + 1 - 4j^2 - 4j - 1 = 4(k^2 + k - j^2 - j) \]

This means that \(4 \) divides \(m^2 - n^2 \) in this case also.

Proposition. For all integers \(m, n \), if \(4 \) divides \(m^2 - n^2 \), then either both \(m \) and \(n \) are even, or \(m \) and \(n \) are odd.
Proof. Consider the contrapositive. Suppose that \(m \) is odd and \(n \) is even. If so, then there are two integers \(j \) and \(k \) such that \(m = 2j + 1 \) and \(n = 2k \). So

\[
m^2 - n^2 = (2j + 1)^2 - 4k^2 = 4j^2 + 4j + 1 - 4k^2.
\]

This is an odd number, so is not divisible by 4.

Suppose that \(m \) is even and \(n \) is odd. If so, then there are two integers \(j \) and \(k \) such that \(m = 2j \) and \(n = 2k + 1 \). So

\[
m^2 - n^2 = 4j^2 - 4k^2 - 4k - 1.
\]

This number is also odd, so it is not divisible by 4. \(\square \)

7. We prove

Proposition. If \(n \) is an odd integer, then \(8 \mid n^2 - 1 \).

Proof. If \(n \) is odd, then there is an integer \(k \) such that \(n = 2k + 1 \). Then \(n^2 - 1 = (2k + 1)^2 - 1 = 4k^2 + 4k = 4(k^2 + k) \). By a result proved in class (and appearing elsewhere in this homework assignment), \(k^2 + k \) must be even, i.e., \(k^2 + k = 2j \) for some integer \(j \). Thus \(n^2 - 1 = 4(k^2 + k) = 4(2j) = 8j \), so \(8 \mid n^2 - 1 \). \(\square \)

10. (b) We prove the following.

Proposition. For all real numbers \(x \) and \(y \), \(|xy| = |x||y| \).

Proof. There are several cases to consider. Clearly, if either \(x \) or \(y \) is equal to 0, then \(|xy| = |x||y| \). The equation is clearly true if \(x > 0 \) and \(y > 0 \), for \(|xy| = xy = |x||y| \) in this case. Suppose that \(x > 0 \) and \(y < 0 \). Then, \(|xy| = -xy \). On the other hand, \(|x| = x \) and \(|y| = -y \), so \(|x||y| = -xy \) as well. Similarly, the equation is true if \(x < 0 \) and \(y > 0 \). Finally, consider what happens when \(x < 0 \) and \(y < 0 \). In this case, the product \(xy > 0 \), so \(|xy| = xy \). On the other hand, \(|x| = -x \) and \(|y| = -y \). This implies that \(|x||y| = xy \) as well. \(\square \)

13. (a) This proof is incorrect, but the statement is true. It correctly deduces that \(an^3 + 2bn = 3 \), but then it incorrectly factors the left side as \(n(an^2 + b) \). Also, since \(n \) and \(an^2 + b \) are both integers, \(n > 0 \), and 3 is a prime number, it does follow (as in the proof) that one of \(n, an^2 + b \) has to equal 3 and the other has to equal 1. This proof only considers the case where \(n = 3 \) and \(an^2 + b = 1 \). The \(n = 1 \) needs to be considered, and doing so is analogous to the \(n = 3 \) case.

The proof should proceed as follows. Rewrite \(an^3 + 2bn = 3 \) as \(n(an^2 + 2b) = 3 \). Since \(n \) and \(an^2 + 2b \) are both integers whose product is 3, and since \(n \) is positive \(an^2 + 2b \) must be a positive. Since 3 is prime, there are only two possibilities: \(n = 3 \) or \(n = 1 \). If \(n = 3 \), then we have

\[
a(3)^3 + 2b(3) = 3,
\]
and dividing both sides by 3, we obtain

\[9a + 2b = 1. \]

If \(n = 1 \), then we have

\[a + 2b = 3. \]

This completes the proof.

(b) This proof is incorrect, since it assumes the negation of the hypothesis of the statement. A correct proof by contradiction assumes the negation of the conclusion. See (a) for a correct proof.

§5.1: 1. (a) \(A = B \). It is evident that \(A \subseteq B \). If \(x \in B \), then \(x = 3, x = -3, x = 2, \) or \(x = -2 \). So, \(B \subseteq A \).

(b) Yes.

(c) No, the set \(C \) is not equal to the set \(D \). The set \(C \) is empty. The set \(D \) contains many, many real numbers.

(d) Yes; the empty set is a subset of any set.

(e) No, \(A \) contains negative numbers, e.g. \(-3\), but \(D \) doesn’t.

3. The following statements are true. \(A \subseteq B, A \subset B, A \neq B \). \(5 \in C \). \(A \subseteq C, A \subset C, A \neq C \). \(\{1, 2\} \not\subseteq A, \{1, 2\} \neq A \). \(4 \not\in B \). \(\text{card}(A) = \text{card}(D) \). \(A \in \mathcal{P}(A) \). \(\emptyset \not\subseteq A, \emptyset \subset A, \emptyset \neq A \). \(\{5\} \subseteq C, \{5\} \subset C, \{5\} \neq C \). \(\{1, 2\} \subseteq B, \{1, 2\} \subset B, \{1, 2\} \neq B \). \(\{3, 2, 1\} \subseteq D, \{3, 2, 1\} \subset D, \{3, 2, 1\} \neq D \). \(D \not\subseteq \emptyset, D \neq \emptyset \). \(\text{card}(A) < \text{card}(B), \text{card}(A) \neq \text{card}(B) \). \(A \in \mathcal{P}(B) \).

5. (a) It is not the case that \(\{a, b\} \subseteq \{a, c, d, e\} \). This is because there is an element \(b \in \{a, b\} \) which is not an element of \(\{a, c, d, e\} \).

(b) This is true. The set \(\{x \in \mathbb{Z} \mid x^2 < 5\} \) is the set \(\{-2, -1, 0, 1, 2\} \). The even members of this set are \(\{-2, 0, 2\} \).

(c) This is true. The empty set is a subset of any set.

(d) This is not true. The set \(\{a\} \) is a subset of \(\{a, b\} \), and so \(\{a\} \) is an element of the power set of \(A \).

6. (a) \(x \not\in A \cap B \) if and only if \(x \not\in A \) or \(x \not\in B \).

(b) \(x \not\in A \cup B \) if and only if \(x \not\in A \) and \(x \not\in B \).

(c) \(x \not\in A - B \) if and only if \(x \in A^c \) or \(x \in B \).

8. (a) \(A \cap B = \{7, 9, 11, 13, \ldots\} \).

(b) \(A \cup B = \{1, 3, 5, 7, 8, 9, 10, 11, \ldots\} \).

(c) \((A \cup B)^c = \{2, 4, 6\} \).

(d) \(A^c \cap B^c = \{2, 4, 6\} \).

(e) \((A \cup B) \cap C = \{3, 9, 12, 15, 18, 21, \ldots\} \).
(f) \((A \cap C) \cup (B \cap C) = \{3, 9, 12, 15, 18, 21, \ldots\}\).

(g) \(B \cap D = \{\}\).

(h) \((B \cap D)^c = \{1, 2, 3, \ldots\}\).

(i) \(A - D = \{7, 9, 11, 13, 15, \ldots\}\).

(j) \(B - D = \{1, 3, 5, 7, 9, \ldots\}\).

(k) \((A - D) \cup (B - D) = \{1, 3, 5, 7, 9, \ldots\}\).

(l) \((A \cup B) - D = \{1, 3, 5, 7, 9, \ldots\}\).

9. (a) For all \(x \in U\), if \(x \in P - Q\) then \(x \in R \cap S\).

(b) There is an \(x\) such that \(x \in P - Q\) and \(x \notin R \cap S\).

(c) For all \(x \in U\), if \(x \notin R \cap S\), then \(x \notin P - Q\).

11. Picture rectangles with lots of circles inside them!